Skip to main content
Log in

The soybean cinnamate 4-hydroxylase gene GmC4H1 contributes positively to plant defense via increasing lignin content

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Lignification is a key event in plant defense against pathogens. In the plant lignin biosynthetic pathway, cinnamate 4-hydroxylase (C4H) catalyzes the conversion of trans-cinnamic acid to p-coumaric acid. However, the potential role of C4H in plant defense remains elusive. In this research, a soybean C4H gene, GmC4H1, was identified via microarray-based comparative transcriptome analysis of genes responsive to Phytophthora sojae infection. The accumulation of GmC4H1 transcripts increased significantly upon P. sojae infection. Nicotiana benthamiana plants overexpressing GmC4H1 demonstrated enhanced lignin accumulation and elevated resistance to both Phytophthora parasitica and Verticillium dahliae. The silencing of GmC4H1 in soybean hairy roots resulted in decreased resistance to P. sojae. These results together suggest that GmC4H1 contributes positively to plant defense against various pathogens, possibly by enhancing lignin biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anterola AM, Lewis NG (2002) Trends in lignin modification: a comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity. Phytochemistry 361:221–294

    Article  Google Scholar 

  • Bhuiyan NH, Selvaraj G, Wei YD, King J (2009) Gene expression profiling and silencing reveal that monolignol biosynthesis plays a critical role in penetration defence in wheat against powdery mildew invasion. J Exp Bot 60(2):509–521

    Article  PubMed  Google Scholar 

  • Blee K, Choi JW, O’Connell AP, Jupe SC, Schuch W, Lewis NG, Bolwell GP (2001) Antisense and sense expression of cDNA coding for CYP73A15, a class II cinnamate 4-hydroxylase, leads to a delayed and reduced production of lignin in tobacco. Phytochemistry 57:1159–1166

    Article  CAS  PubMed  Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546

    Article  CAS  PubMed  Google Scholar 

  • Bonawitz ND, Chapple C (2010) The genetics of lignin biosynthesis: connecting genotype to phenotype. Annu Rev Genet 44:337–363

    Article  CAS  PubMed  Google Scholar 

  • Chen XP, Jing LY, Wang J, Jian HJ, Mei JQ, Xu XF, Li JN, Liu LZ (2017) Correlation analysis of Sclerotinia resistance with lignin content and monomer G/S and its QTL mapping in Brassica napus L. Acta Agron Sin 43(9):1280–1289 (in Chinese)

    Article  Google Scholar 

  • Clemente TE, Cahoon EB (2009) Soybean oil: genetic approaches for modification of functionality and total content. Plant Physiol 151:1030–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Do CT, Pollet B, Thevenin J, Sibout R, Denoue D, Barriere Y, Lapierre C, Jouanin L (2007) Both caffeoyl Coenzyme A 3-O-methyltransferase 1 and caffeic acid O-methyltransferase 1 are involved in redundant functions for lignin, flavonoids and sinapoyl malate biosynthesis in Arabidopsis. Planta 226:1117–1129

    Article  CAS  PubMed  Google Scholar 

  • Foster CE, Martin TM, Pauly M (2010) Comprehensive compositional analysis of plant cell walls (lignocellulosic biomass) Part I: Lignin. JoVE 37:e1745

    Google Scholar 

  • Fu C et al (2011) Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass. Proc Natl Acad Sci USA 108:3803–3808

    Article  PubMed  PubMed Central  Google Scholar 

  • Fukushima RS, Kerley MS (2011) Use of lignin extracted from different plant sources as standards in the spectrophotometric acetyl bromide lignin method. J Agric Food Chem 59:3505–3509

    Article  CAS  PubMed  Google Scholar 

  • Gan SP, Yan Q, Cui XX, Xue D, Zhao JM, Guo N, Wang HT, Xing H (2016) Lignin content and expression of key biosynthetic genes in soybean upon infection by P. sojae. Soybean Sci 35:789–794 (in Chinese)

    Google Scholar 

  • Gao F, Zhou BJ, Li GY, Jia PS, Li H, Zhao YL, Zhao P, Xia GX, Guo HS (2010) A glutamic acid-rich protein identified in Verticillium dahliae from an insertional mutagenesis affects microsclerotial formation and pathogenicity. PLoS ONE 5.0(12):e15319

    Article  CAS  Google Scholar 

  • García JR, Anderson N, Lefeuvre R, Iturra C, Elissetche J, Chapple C, Valenzuela S (2014) Rescue of syringyl lignin and sinapate ester biosynthesis in Arabidopsis thaliana by a coniferaldehyde 5-hydroxylase from Eucalyptus globulus. Plant Cell Rep 33:1263–1274

    Article  CAS  PubMed  Google Scholar 

  • Gayoso C, Pomar F, Novo-Uzal E, Merino F, Ilárduya ÓMd (2010) The Ve-mediated resistance response of the tomato to Verticillium dahliae involves H2O2, peroxidase and lignins and drives PAL gene expression. BMC Plant Biol 10:232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grabber JH, Ralph J, Hatfield RD (1998) Severe inhibition of maize wall degradation by synthetic lignins formed with conifer aldehyde. J Sci Food Agric 78:81–87

    Article  CAS  Google Scholar 

  • Guo WF, Jin L, Miao YH, He X, Hu Q, Guo K, Zhu LF, Zhang XL (2016) An ethylene response-related factor, GbERF1-like, from Gossypium barbadense improves resistance to Verticillium dahliae via activating lignin synthesis. Plant Mol Biol 91:305–318

    Article  CAS  PubMed  Google Scholar 

  • Jung JH, Fouad WM, Vermerris W, Gallo M, Altpeter F (2012) RNAi suppression of lignin biosynthesis in sugarcane reduces recalcitrance for biofuel production from lignocellulosic biomass. Plant Biotechnol J 10:1067–1076

    Article  CAS  PubMed  Google Scholar 

  • Kang Z, Buchenauer H (2000) Ultrastructural and immunocytochemical investigation of pathogen development and host responses in resistant and susceptible wheat spikes infected by Fusarium culmorum. Physiol Mol Plant Pathol 57:255–268

    Article  CAS  Google Scholar 

  • Kawasaki T, Koita H, Nakatsubo T, Hasegawa K, Wakabayashi K, Takahashi H, Umemura K, Umezawa T, Shimamoto K (2006) Cinnamoyl-CoA reductase, a key enzyme in lignin biosynthesis, is an effector of small GTPase Rac in defense signaling in rice. Proc Natl Acad Sci USA 103(1):230–235

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Vashisth D, Misra A, Akhtar MQ, Jalil SU, Shanker K, Gupta MM, Rout PK, Gupta AK, Shasany AK (2016) RNAi down-regulation of cinnamate-4-hydroxylase increases artemisinin biosynthesis in Artemisia annua. Sci Rep 6:26458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Kim JI, Pysh L, Chapple C (2015) Four isoforms of Arabidopsis thaliana 4-coumarate: CoA ligase (4CL) have overlapping yet distinct roles in phenylpropanoid metabolism. Plant Physiol 169:2409

    CAS  PubMed  PubMed Central  Google Scholar 

  • Libault M, Thibivilliers S, Bilgin DD, Radwan O, Benitez M, Clough SJ, Stacey G (2008) Identification of four soybean reference genes for gene expression normalization. Plant Genome 1:44–54

    Article  CAS  Google Scholar 

  • López-Gresa MP, Torres C, Campos L, Lisón P, Rodrigo I, Bellés JM, Conejero V (2011) Identification of defence metabolites in tomato plants infected by the bacterial pathogen Pseudomonas syringae. Environ Exp Bot 74:216–228

    Article  CAS  Google Scholar 

  • Millar DJ, Long M, Donovan G, Fraser PD, Boudet AM, Danoun S, Bramley PM, Bolwell GP (2007) Introduction of sense constructs of cinnamate 4-hydroxylase (CYP73A24) in transgenic tomato plants shows opposite effects on flux into stem lignin and fruit flavonoids. Phytochemistry 68:1497–1509

    Article  CAS  PubMed  Google Scholar 

  • Pinçon G, Maury S, Hoffmann L, Geoffroy P, Lapierre C, Pollet B, Legrand M (2001) Repression of O-methyltransferase genes in transgenic tobacco affects lignin synthesis and plant growth. Phytochemistry 57:1167–1176

    Article  PubMed  Google Scholar 

  • Qin Y, He YJ, Kabahuma M, Chaya T, Kelly A, Borrego E, Yang B, Kasmi FE, Li Y, Teixeira P (2017) A gene encoding maize caffeoyl-CoA O-methyltransferase confers quantitative resistance to multiple pathogens. Nat Genet 49:1364–1372

    Article  CAS  Google Scholar 

  • Reddy MS, Chen FG, Jackson L, Aljoe H, Dixon RA (2005) Targeted down-regulation of cytochrome P450 enzymes for forage quality improvement in alfalfa (Medicago sativa L.). Proc Natl Acad Sci USA 102:16573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saathoff AJ, Sarath G, Chow EK, Dien BS, Tobias CM (2011) Downregulation of cinnamyl-alcohol dehydrogenase in switchgrass by RNA silencing results in enhanced glucose release after cellulase treatment. PLoS ONE 6:e16416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sewalt V, Ni W, Blount JW, Jung HG, Masoud SA, Howles PA, Lamb C, Dixon RA (1997) Reduced lignin content and altered lignin composition in transgenic tobacco down-regulated in expression of l-phenylalanine ammonia-lyase or cinnamate 4-hydroxylase. Plant Physiol 115:41–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shafrin F, Das SS, Sanan-Mishra N, Khan H (2015) Artificial miRNA-mediated down-regulation of two monolignoid biosynthetic genes (C3H and F5H) cause reduction in lignin content in jute. Plant Mol Biol 89:511–527

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Li L, Zhao J, Huang J, Yan Q, Xing H, Guo N (2014) Genetic analysis and fine mapping of RpsJS, a novel resistance gene to Phytophthora sojae in soybean [Glycine max (L.) Merr]. Theor Appl Genet 127:913–919

    Article  CAS  PubMed  Google Scholar 

  • Sykes RW, Gjersing EL, Foutz K, Rottmann WH, Kuhn SA, Foster CE, Ziebell A, Turner GB, Decker SR, Hinchee MA, Davis MF (2015) Down-regulation of p-coumaroyl quinate/shikimate 3′-hydroxylase (C3′H) and cinnamate 4-hydroxylase (C4H) genes in the lignin biosynthetic pathway of Eucalyptus urophylla x E. grandis leads to improved sugar release. Biotechnol Biofuels 8:128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takuma S, Masayasu K, Shinya Y, Isao M, Tamotsu K, Akito K, Makita H, Ryo Y, Kazuhiko W, Masataka A (2012) Pathogenic diversity of Phytophthora sojae and breeding strategies to develop Phytophthora-resistant soybeans. Breed Sci 61:511–522

    Article  CAS  Google Scholar 

  • Tyler BM (2007) Phytophthora sojae: root rot pathogen of soybean and model oomycete. Mol Plant Pathol 8:1–8

    Article  CAS  PubMed  Google Scholar 

  • Wang GF, Balintkurti PJ (2016) Maize homologs of CCoAOMT and HCT, two key enzymes in lignin biosynthesis, form complexes with the NLR Rp1 protein to modulate the defense response. Plant Physiol 171(3):2166–2177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang MX, Zhu XL, Wang K, Lu CG, Luo MY, Shan TL, Zhang ZY (2018) A wheat caffeic acid 3-O-methyltransferase TaCOMT-3D positively contributes to both resistance to sharp eyespot disease and stem mechanical strength. Sci Rep 8:6543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong Q, Ye WW, Choi D, Wong J, Qiao YL, Tao K, Wang YC, Ma WB (2014) Phytophthora suppressor of RNA silencing 2 is a conserved RxLR effector that promotes infection in soybean and Arabidopsis thaliana. Mol Plant Microbe Interact 27:1379

    Article  CAS  PubMed  Google Scholar 

  • Xu B, Escamilla-Treviño LL, Sathitsuksanoh N, Shen ZX, Shen H, Zhang YHP, Dixon RA, Zhao BY (2011) Silencing of 4-coumarate: coenzyme A ligase in switchgrass leads to reduced lignin content and improved fermentable sugar yields for biofuel production. New Phytol 192:611–625

    Article  CAS  PubMed  Google Scholar 

  • Yan Q, Cui XX, Su LM, Xu N, Guo N, Xing H, Dou DL (2014) GmSGT1 is differently required for soybean Rps genes-mediated and basal resistance to Phytophthora sojae. Plant Cell Rep 33:1275–1288

    Article  CAS  PubMed  Google Scholar 

  • Yan Q, Cui XX, Lin S, Gan SP, Xing H, Dou DL (2016) GmCYP82A3, a soybean cytochrome p450 family gene involved in the jasmonic acid and ethylene signaling pathway, enhances plant resistance to biotic and abiotic stresses. PLoS ONE 11:e0162253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong R, Richardson EA, Ye ZH (2007) The MYB46 transcription factor is a direct target of SND1 and regulates secondary wall biosynthesis in Arabidopsis. Plant Cell 19:2776–2792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (31625023, 31721004 and 31672008) and Special Fund for Agro-scientific Research in the Public Interest (201503112).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daolong Dou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10725_2019_494_MOESM1_ESM.tif

Supplementary material 1 (TIFF 736 kb) Fig. S1 Alignment of C4H1 amino acid sequences from five plant species. Amino acid sequences used in the alignment are from Arabidopsis thaliana (NP_180607.1), Gossypium hirsutum (ACH56520), Medicago truncatula (XP_003616037.1), Nicotiana tabacum (NP_001312254.1) and Oryza sativa (EAZ35606.1). Identical amino acids are marked in black. Conserved amino acids are showed in gray. Sequences were aligned using CLUSTALW and viewed in GeneDoc.

10725_2019_494_MOESM2_ESM.tif

Supplementary material 2 (TIFF 278 kb) Fig. S2 Molecular verification of transgenicN. benthamianalines. Genomic DNA (a) and cDNA (b) PCR amplification of GmC4H1 (upper panel) from wild-type (WT), empty vector (EV) transformant and threeT2 transgenic lines expressing GmC4H1 (12-3, 14-4 and 18–4). NbEF1a (lower panel) was used as an internal control. c Seed germination rates of transgenic N. benthamiana plants.

Supplementary material 3 (DOCX 13 kb) Table S1: Primers used in the study

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Q., Si, J., Cui, X. et al. The soybean cinnamate 4-hydroxylase gene GmC4H1 contributes positively to plant defense via increasing lignin content. Plant Growth Regul 88, 139–149 (2019). https://doi.org/10.1007/s10725-019-00494-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-019-00494-2

Keywords

Navigation