Skip to main content
Log in

Induction of the heat shock response in Arabidopsis by chlorinated 1,4-naphthoquinones

Plant Growth Regulation Aims and scope Submit manuscript

Abstract

It is known that some plants produce 1,4-naphthoquinones (1,4NQs) to inhibit the growth of other plants as allelochemicals. Here, we report that a chlorinated 1,4NQ enhanced the heat tolerance of Arabidopsis, and this enhancement was associated with induction of the heat shock response (HSR) in the plant. Nine 1,4NQs were subjected to the HSR assay by using the promoter of a small heat shock protein (HSP17.6C-CI) gene of Arabidopsis. The results indicated that chlorinated 1,4NQs, i.e., 2,3-dichloro-1,4-naphthoquinone (DNQ) and 2,3-dichloro-5,8-dihydroxy-1,4-naphthoquinone (DDNQ), apparently showed HSR-inducing activities five to six times greater than a positive control, geldanamycin. However, nonchlorinated 1,4NQs such as lawsone, juglone, plumbagin, and menadione showed much lower activities than DNQ and DDNQ. The administration of DDNQ increased the accumulation of the HSP17.6C-CI and HSP90.1 transcripts as well as of the corresponding proteins in the Arabidopsis seedlings. DDNQ significantly ameliorated the reductions of fresh weight and chlorophyll contents of the plant due to heat. These results suggest that the chlorinated 1,4NQs are potent HSR inducers that can enhance the heat tolerance of plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Babula P, Adam V, Kizek R, Sladký Z, Havel L (2009) Naphthoquinones as allelochemical triggers of programmed cell death. Environ Exp Bot 65:330–337

    Article  CAS  Google Scholar 

  • Babula P, Vaverkova V, Poborilova Z, Ballova L, Masarik M, Provaznik I (2014) Phytotoxic action of naphthoquinone juglone demonstrated on lettuce seedling roots. Plant Physiol Biochem 84:78–86

    Article  CAS  PubMed  Google Scholar 

  • Bita CE, Gerats T (2013) Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front Plant Sci 4:273 (1–18)

    Article  PubMed  PubMed Central  Google Scholar 

  • Björkman M, Klingen I, Birch AN, Bones AM, Bruce TJ, Johansen TJ, Meadow R, Mølmann J, Seljåsen R, Smart LE, Stewart D (2011) Phytochemicals of Brassicaceae in plant protection and human health—influences of climate, environment and agronomic practice. Phytochemistry 72:538–556

    Article  CAS  PubMed  Google Scholar 

  • Bolton JL, Dunlap T (2017) Formation and biological targets of quinones: cytotoxic versus cytoprotective effects. Chem Res Toxicol 30:13–37

    Article  CAS  PubMed  Google Scholar 

  • Chi WC, Fu SF, Huang TL, Chen YA, Chen CC, Huang HJ (2011) Identification of transcriptome profiles and signaling pathways for the allelochemical juglone in rice roots. Plant Mol Biol 77:591–607

    Article  CAS  PubMed  Google Scholar 

  • Clarke SM, Mur LA, Wood JE, Scott IM (2004) Salicylic acid dependent signaling promotes basal thermotolerance but is not essential for acquired thermotolerance in Arabidopsis thaliana. Plant J 38:432–447

    Article  CAS  PubMed  Google Scholar 

  • Copeland RL Jr, Das JR, Bakare O, Enwerem NM, Berhe S, Hillaire K, White D, Beyene D, Kassim OO, Kanaan YM (2007) Cytotoxicity of 2,3-dichloro-5,8-dimethoxy-1,4-naphthoquinone in androgen-dependent and -independent prostate cancer cell lines. Anticancer Res 27:1537–1546

    CAS  PubMed  Google Scholar 

  • Deryng D, Conway D, Ramankutty N, Price J, Warren R (2014) Global crop yield response to extreme heat stress under multiple climate change futures. Environ Res Lett 9:034011 (1–13)

    Article  Google Scholar 

  • Hara M, Kurita I (2014) The natural alkaloid sanguinarine promotes the expression of heat shock protein genes in Arabidopsis. Acta Physiol Plant 36:3337–3343

    Article  CAS  Google Scholar 

  • Hara M, Harazaki A, Tabata K (2013) Administration of isothiocyanates enhances heat tolerance in Arabidopsis thaliana. Plant Growth Regul 69:71–77

    Article  CAS  Google Scholar 

  • Hara M, Yamauchi N, Sumita Y (2018) Monoterpenes induce the heat shock response in Arabidopsis. Z Naturforsch C 73:177–184

    Article  CAS  PubMed  Google Scholar 

  • Kang KH, Lee KH, Kim MY, Choi KH (2001) Caspase-3-mediated cleavage of the NF-κB subunit p65 at the NH2 terminus potentiates naphthoquinone analog-induced apoptosis. J Biol Chem 276:24638–24644

    Article  CAS  PubMed  Google Scholar 

  • Khan MA, Gul B, Weber DJ (2001) Seed germination characteristics of Halogeton glomeratus. Can J Bot 79:1189–1194

    Google Scholar 

  • Kim MG, Lee HS (2016) Insecticidal toxicities of naphthoquinone and its structural derivatives. Appl Biol Chem 59:3–8

    Article  CAS  Google Scholar 

  • Kotak S, Larkindale J, Lee U, von Koskull-Döring P, Vierling E, Scharf KD (2007) Complexity of the heat stress response in plants. Curr Opin Plant Biol 10:310–316

    Article  CAS  PubMed  Google Scholar 

  • Landais I, Sobeck A, Stone S, LaChapelle A, Hoatlin ME (2009) A novel cell-free screen identifies a potent inhibitor of the Fanconi anemia pathway. Int J Cancer 124:783–792

    Article  CAS  PubMed  Google Scholar 

  • Lezama-Dávila CM, Isaac-Márquez AP, Kapadia G, Owens K, Oghumu S, Beverley S, Satoskar AR (2012) Leishmanicidal activity of two naphthoquinones against Leishmania donovani. Biol Pharm Bull 35:1761–1764

    Article  PubMed  PubMed Central  Google Scholar 

  • Lichtenthaler HK, Buschmann C (2001) Chlorophylls and carotenoids—measurement and characterization by UV-VIS. Current protocols in food analytical chemistry (CPFA), (Supplement 1). Wiley, New York (F4.3.1–F4.3.8)

    Google Scholar 

  • Macías FA, Molinillo JM, Varela RM, Galindo JC (2007) Allelopathy—a natural alternative for weed control. Pest Manag Sci 63:327–348

    Article  CAS  PubMed  Google Scholar 

  • Masand S, Yadav SK (2016) Overexpression of MuHSP70 gene from Macrotyloma uniflorum confers multiple abiotic stress tolerance in transgenic Arabidopsis thaliana. Mol Biol Rep 43:53–64

    Article  CAS  PubMed  Google Scholar 

  • Matsuoka E, Matsubara T, Takahashi I, Murano H, Hara M (2016) The isoquinoline alkaloid sanguinarine which inhibits chaperone activity enhances the production of heat shock proteins in Arabidopsis. Plant Biotechnol 33:409–413

    Article  CAS  Google Scholar 

  • Murano H, Matsubara T, Takahashi I, Hara M (2017) A purine-type heat shock protein 90 inhibitor promotes the heat shock response in Arabidopsis. Plant Biotechnol Rep 11:107–113

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 29:e45–e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruelland E, Zachowski A (2010) How plants sense temperature. Environ Exp Bot 69:225–232

    Article  Google Scholar 

  • Saidi Y, Finka A, Chakhporanian M, Zrÿd JP, Schaefer DG, Goloubinoff P (2005) Controlled expression of recombinant proteins in Physcomitrella patens by a conditional heat-shock promoter: a tool for plant research and biotechnology. Plant Mol Biol 59:697–711

    Article  CAS  PubMed  Google Scholar 

  • Saidi Y, Domini M, Choy F, Zryd JP, Schwitzguebel JP, Goloubinoff P (2007) Activation of the heat shock response in plants by chlorophenols: transgenic Physcomitrella patens as a sensitive biosensor for organic pollutants. Plant Cell Environ 30:753–763

    Article  CAS  PubMed  Google Scholar 

  • Shang XF, Liu YQ, Guo X, Miao XL, Chen C, Zhang JX, Xu XS, Yang GZ, Yang CJ, Li JC, Zhang XS (2018) Application of sustainable natural resources in agriculture: acaricidal and enzyme inhibitory activities of naphthoquinones and their analogs against Psoroptes cuniculi. Sci Rep 8:1609 (1–9)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soderquist CJ (1973) Juglone and allelopathy. J Chem Educ 50:782–783

    Article  CAS  PubMed  Google Scholar 

  • Tiwari BS, Belenghi B, Levine A (2002) Oxidative stress increased respiration and generation of reactive oxygen species, resulting in ATP depletion, opening of mitochondrial permeability transition, and programmed cell death. Plant Physiol 128:1271–1281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volkov RA, Panchuk II, Mullineaux PM, Schöffl F (2006) Heat stress-induced H2O2 is required for effective expression of heat shock genes in Arabidopsis. Plant Mol Biol 61:733–746

    Article  CAS  PubMed  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223

    Article  Google Scholar 

  • Wang X, Yan B, Shi M, Zhou W, Zekria D, Wang H, Kai G (2016) Overexpression of a Brassica campestris HSP70 in tobacco confers enhanced tolerance to heat stress. Protoplasma 253:637–645

    Article  CAS  PubMed  Google Scholar 

  • Waters ER (2013) The evolution, function, structure, and expression of the plant sHSPs. J Exp Bot 64:391–403

    Article  CAS  PubMed  Google Scholar 

  • Weigel D, Glazebrook J (2002) Arabidopsis: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Widhalm JR, Rhodes D (2016) Biosynthesis and molecular actions of specialized 1,4-naphthoquinone natural products produced by horticultural plants. Hortic Res 3:16046 (1–17)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wink M, Twardowski T (1992) Allelochemical properties of alkaloids. Effects on plants, bacteria and protein biosynthesis. In: Rizvi SJH, Rizvi V (eds) Allelopathy. Basic and applied aspects. Chapman & Hall, London, pp 129–150

    Google Scholar 

  • Yamada K, Fukao Y, Hayashi M, Fukazawa M, Suzuki I, Nishimura M (2007) Cytosolic HSP90 regulates the heat shock response that is responsible for heat acclimation in Arabidopsis thaliana. J Biol Chem 282:37794–37804

    Article  CAS  PubMed  Google Scholar 

  • Yamauchi Y, Kunishima M, Mizutani M, Sugimoto Y (2015) Reactive short-chain leaf volatiles act as powerful inducers of abiotic stress-related gene expression. Sci Rep 26:8030 (1–8)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masakazu Hara.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 2029 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kato, N., Yamakawa, D., Yamauchi, N. et al. Induction of the heat shock response in Arabidopsis by chlorinated 1,4-naphthoquinones. Plant Growth Regul 87, 413–420 (2019). https://doi.org/10.1007/s10725-019-00477-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-019-00477-3

Keywords

Navigation