Skip to main content
Log in

A role of ETR1 in regulating leaf petiole elongation mediated by elevated temperature in Arabidopsis

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Temperature fluctuation profoundly affects the plant growth and development. In this study, we show that ethylene receptor ETR1 is involved in regulating leaf petiole elongation mediated by higher temperatures (at 32 °C in this study). ETR1 loss-of-function mutant etr1-7 cannot elongate the leaf petiole at 32 °C as much as wild-type seedlings (WT). Overexpression of ETR1 in etr1-7 not only fully rescued the deficient in petiole elongation under higher temperature conditions but also caused longer petiole length under normal temperature conditions (22 °C). Plants with different mutant ETR1 alleles including etr1-7 etr1-1, and etr1-9 but not etr1-3 impair the petiole elongation mediated by elevated temperature. RNA-Seq analysis showed that hundreds of genes induced by elevated temperature in WT were not differentially expressed in etr1-7. Gene ontology enrichment analysis reveals that the molecular functions of these genes primarily relate to photosynthesis and protein degradation. Furthermore, genes involved in regulating organ elongation (such as BRI1-EMS-SUPPRESSOR 1, BES1), are significantly up-regulated in WT rather than in etr1-7 after the treatment of higher temperature. The results from this study suggest ETR1 is involved in regulating Arabidopsis response to elevated ambient temperature in both molecular and morphological levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andrews S (2014) FastQC a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

  • Bita CE, Gerats T (2013) Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front Plant Sci 4:273

    Article  PubMed  PubMed Central  Google Scholar 

  • Chaiwanon J, Wang W, Zhu JY, Oh E, Wang ZY (2016) Information integration and communication in plant growth regulation. Cell 164(6):1257–1268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang C, Kwok SF, Bleecker AB (1993) Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science 262(5133):539–544

    Article  CAS  PubMed  Google Scholar 

  • Chen YF, Randlett MD, Findell JL, Schaller GE (2002) Localization of the ethylene receptor ETR1 to the endoplasmic reticulum of Arabidopsis. J Biol Chem 277:19861–19866

    Article  CAS  PubMed  Google Scholar 

  • Chen YF, Gao Z, Kerris RJI III, Wang WY, Bingder BM, Schaller GE (2010) Ethylene receptors function as components of high-molecular-mass protein complexes in Arabidopsis. PLoS ONE 5(1):e8640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743

    Article  CAS  PubMed  Google Scholar 

  • Cox MP, Peterson DA, Biggs PJ (2010) SolexaQA: at-a-glance quality assessment of Illumina second-generation sequencing data. BMC Bioinform 11(1):485

    Article  Google Scholar 

  • Desikan R, Hancock JT, Bright J, Harrison J, Weir I, Hooley R, Neill SJ (2005) A role for ETR1 in hydrogen peroxide signaling in stomatal guard cells. Plant Physiol 137(3):831–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ge M, Liu Y, Jiang L, Wang Y, Lv Y, Zhou L, Liang S, Bao H, Zhao H (2018) Genome-wide analysis of maize NLP transcription factor family revealed the roles in nitrogen response. Plant Growth Regul 84(1):95–105

    Article  CAS  Google Scholar 

  • Hall AE, Chen QG, Findell JL, Schaller GE, Bleecker AB (1999) The relationship between ethylene binding and dominant insensitivity conferred by mutant forms of the ETR1 ethylene receptor. Plant Physiol 121(1):291–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hua J (2009) From freezing to scorching, transcriptional responses to temperature variations in plants. Curr Opin Plant Biol 12(5):568–573

    Article  CAS  PubMed  Google Scholar 

  • Hua J, Meyerowitz EM (1998) Ethylene responses are negatively regulated by a receptor gene family in. Arabidopsis thaliana. Cell 94(2):261–271

    Article  CAS  PubMed  Google Scholar 

  • Hua J, Sakai H, Nourizadeh S, Chen QG, Bleecker AB, Ecker JR, Elliot MM (1998) EIN4 and ERS2 are members of the putative ethylene receptor gene family in Arabidopsis. Plant Cell 10(8):1321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang J, Zhang C, Wang X (2015) A recently evolved isoform of the transcription factor BES1 promotes brassinosteroid signaling and development in Arabidopsis thaliana. Plant Cell 27(2):361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim K, Portis AR Jr (2005) Temperature dependence of photosynthesis in Arabidopsis plants with modifications in Rubisco activase and membrane fluidity. Plant Cell Physiol 46(3):522–530

    Article  CAS  PubMed  Google Scholar 

  • Kohorn BD, Kobayashi M, Johansen S, Riese J, Huang LF, Koch K, Fu S, Dotson A, Byers N (2006) An Arabidopsis cell wall-associated kinase required for invertase activity and cell growth. Plant J 46(2):307–316

    Article  CAS  PubMed  Google Scholar 

  • Koini MA, Alvey L, Allen T, Tilley CA, Harberd NP, Whitelam GC, Franklin KA (2009) High temperature-mediated adaptations in plant architecture require the bHLH transcription factor PIF4. Curr Biol 19(5):408–413

    Article  CAS  PubMed  Google Scholar 

  • Kotak S, Larkindale J, Lee U, Koskull-Döring PV, Vierling E, Scharf KD (2007) Complexity of the heat stress response in plants sachin. Curr Opin Plant Biol 10(3):310–316

    Article  CAS  PubMed  Google Scholar 

  • Larkindale J, Knight MR (2002) Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiol 128(2):682–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larkindale J, Vierling E (2008) Core genome responses involved in acclimation to high temperature. Plant Physiol 146(2):748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larkindale J, Hall JD, Knight MR, Vierling E (2005) Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol 138(2):882–897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SY, Hwang EY, Seok HY, Tarte VN, Jeong MS, Jang SB, Moon YH (2015) Arabidopsis AtERF71/HRE2 functions as transcriptional activator via cis-acting GCC box or DRE/CRT element and is involved in root development through regulation of root cell expansion. Plant Cell Rep 34(2):223–231

    Article  CAS  PubMed  Google Scholar 

  • Lesk C, Rowhani P, Ramankutty N (2016) Influence of extreme weather disasters on global crop production. Nature 529(7584):84

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Lobell DB, Asner GP (2003) Climate and management contributions to recent trends in US agricultural yields. Science 299(5609):1032–1032

    Article  CAS  PubMed  Google Scholar 

  • Meng L, Buchanan BB, Feldman LJ, Luan S (2012) CLE-like (CLEL) peptides control the pattern of root growth and lateral root development in Arabidopsis. Proc Natl Acad Sci 109(5):1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monfared MM, Simon MK, Robert J. Meister, Roig-Villanova I, Maarten Kooiker, Colombo L, Fletcher JC, Gasser CS (2011) Overlapping and antagonistic activities of basic pentacysteine, genes affect a range of developmental processes in Arabidopsis. Plant J 66(6):1020–1031

    Article  CAS  PubMed  Google Scholar 

  • Park HY, Seok HY, Woo DH, Lee SY, Tarte VN, Lee EH, Lee CH, Moon YH (2011) AtERF71/HRE2 transcription factor mediates osmotic stress response as well as hypoxia response in Arabidopsis. Biochem Biophys Res Commun 414(1):135–141

    Article  CAS  PubMed  Google Scholar 

  • Porter JR (2005) Rising temperatures are likely to reduce crop yields. Nature 436(7048):174–174

    Article  CAS  PubMed  Google Scholar 

  • Qu X, Schaller GE (2004) Requirement of the histidine kinase domain for signal transduction by the ethylene receptor ETR1. Plant Physiol 136(2):2961–2970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qu X, Hall BP, Gao Z, Schaller GE (2007) A strong constitutive ethylene-response phenotype conferred on Arabidopsis plants containing null mutations in the ethylene receptors ETR1 and ERS1. BMC Plant Biol 7(1):3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakai H, Hua J, Chen QG, Chang C, Medrano LJ, Bleecker AB, Meyerowitz EM (1998) ETR2 is an ETR1-like gene involved in ethylene signaling in Arabidopsis. Proc Natl Acad Sci USA 95(10):5812–5817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shakeel SN, Wang X, Binder BM, Schaller GE (2013) Mechanisms of signal transduction by ethylene: overlapping and non-overlapping signalling roles in a receptor family. AoB Plants 5:plt010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swindell WR, Huebner M, Weber AP (2007) Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways. BMC Genom 8(1):125

    Article  CAS  Google Scholar 

  • Vierstra RD (1996) Proteolysis in plants: mechanisms and functions. Post-transcriptional control of gene expression in plants. Springer, Amsterdam

    Google Scholar 

  • Wang W, Hall AE, O’Malley R, Bleecker AB (2003) Canonical histidine kinase activity of the transmitter domain of the etr1 ethylene receptor from arabidopsis is not required for signal transmission. Proc Natl Acad Sci USA 100(1):352–357

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Zhu YY, Fujioka S, Asami T, Li JY, Li JM (2009) Regulation of Arabidopsis brassinosteroid signaling by atypical basic helix-loop-helix proteins. Plant Cell 21(12):3781–3791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Chen R, Hao Y, Liu H, Song S, Sun G (2017) Transcriptome analysis reveals differentially expressed genes (DEGs) related to lettuce (Lactuca sativa) treated by TiO2/ZnO nanoparticles. Plant Growth Regul 83(1):13–25

    Article  CAS  Google Scholar 

  • Zhang LY, Bai MY, Wu J, Zhu JY, Wang H, Zhang Z, Wang W, Sun Y, Zhao J, Sun X (2009) Antagonistic HLH/bHLH transcription factors mediate brassinosteroid regulation of cell elongation and plant development in rice and Arabidopsis. Plant Cell 21(12):3767–3780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank E. Schaller (Dartmouth College, Hanover, NH) for the ETR1 full-length construct. Funding for this study was provided by the National Natural Science Foundation of China (31400248), the Jiangsu Science Fund for Distinguished Young Scholars, China (BK20150027), Natural Science Foundation of Jiangsu Province (Grant No. BK20160584), and the China State Key Laboratory of Plant Physiology and Biochemistry (Grant No. SKLPPBKF1507).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Zhao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., He, B., Ning, L. et al. A role of ETR1 in regulating leaf petiole elongation mediated by elevated temperature in Arabidopsis. Plant Growth Regul 86, 311–321 (2018). https://doi.org/10.1007/s10725-018-0430-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-018-0430-4

Keywords

Navigation