Skip to main content
Log in

Lsi1-regulated Cd uptake and phytohormones accumulation in rice seedlings in presence of Si

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Silicon (Si) is known for its role in regulating the response of plants to imposed abiotic stresses. Since the stresses generally hinder production of a crop, such as rice, the exploration of the biochemistry and plant physiology relating to the function is of interest. Indeed, recently, there were reports on the function of Lsi1 in regulating the tolerance of rice to cadmium (Cd) stress. This study compared the kinetics of the Cd uptakes in Lemont wild type rice and its transgenic lines exposed to Cd with or without exogenous Si supply. At the same time, changes on the endogenous phytohormones and growth of the rice seedlings were monitored. Genetically, Lsi1 overexpression was found to downregulate Km and Vmax of Cd uptake kinetics in the plants under Cd stress, especially in the presence of Si. On the other hand, Lsi1 RNAi upregulated Km and Vmax regardless whether Si was present or not. It implied that Lsi1 could be capable of regulating Si as well as Cd transports. Under Cd stress, addition of Si reduced the Cd uptake of the rice lines in the order of Lsi1-overexpression line > Lemont > Lsi1-RNAi line. In addition, it also affected the chlorophyll biosynthesis and dry mass accumulation of the rice plants under Cd stress. Analyses on phytohormones including IAA, GA3, JA, SA and ABA, as well as physiological functions, of the seedlings further verified the active involvement of Lsi1 in the complex defense system of the plants against Cd stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Si:

Silicon

Cd:

Cadmium

Lsi1 :

Low Si-influx 1

WT:

Lemont wild type rice

Lsi1-OE line:

Lsi1-overexpression transgenic Lemont rice

Lsi1-RNAi line:

Lsi1-RNAi transgenic Lemont rice

K m :

Michaelis constant

V max :

Maximum influx rate

IAA:

Indoleacetic acid

GA3 :

Gibberellin3

JA:

Jasmonic acid

SA:

Salicylic acid

ABA:

Abscisic acid

References

  • Asgher M, Khan MIR, Anjum NA, Khan NA (2015) Minimising toxicity of cadmium in plants-role of plant growth regulators. Protoplasma 252:399–413

    Article  CAS  PubMed  Google Scholar 

  • Bai X, Dong Y, Kong J, Xu L, Liu S (2014) Effects of application of salicylic acid alleviates cadmium toxicity in perennial ryegrass. Plant Growth Regul 75:695–706

    Article  CAS  Google Scholar 

  • Bari R, Jones JD (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69:473–488

    Article  CAS  PubMed  Google Scholar 

  • Cheng WD, Yao HG, Zhang GP, Tang ML, Dominy P (2005) Effect of cadmium on growth and nutrition metabolism in rice. Sci Agric Sin 38:528–537 (in Chinese with English abstract)

    CAS  Google Scholar 

  • Chmielowska-Bąk J, Lefèvre I, Lutts S, Deckert J (2013) Short term signaling responses in roots of young soybean seedlings exposed to cadmium stress. J Plant Physiol 170:1585–1594

    Article  CAS  PubMed  Google Scholar 

  • da Cunha KPV, do Nascimento CWA (2009) Silicon effects on metal tolerance and structural changes in maize (Zea mays L.) grown on a cadmium and zinc enriched soil. Water Air Soil Pollut 197:323

    Article  CAS  Google Scholar 

  • DalCorso G, Farinati S, Maistri S, Furini A (2008) How plants cope with cadmium: staking all on metabolism and gene expression. J Integr Plant Biol 50:1268–1280

    Article  CAS  PubMed  Google Scholar 

  • DalCorso G, Farinati S, Furini A (2010) Regulatory networks of cadmium stress in plants. Plant Signal Behav 5:663–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies PJ (2010) The plant hormones: their nature, occurrence, and functions. In: Davies PJ (ed) Plant hormones. Springer, Dordrecht

    Chapter  Google Scholar 

  • Detmann KC, Araújo WL, Martins SC, Sanglard LM, Reis JV, Detmann E, Rodrigues F, Nunes-Nesi A, Fernie AR, DaMatta FM (2012) Silicon nutrition increases grain yield, which, in turn, exerts a feed-forward stimulation of photosynthetic rates via enhanced mesophyll conductance and alters primary metabolism in rice. New Phytol 196:752–762

    Article  CAS  PubMed  Google Scholar 

  • Di Toppi LS, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105–130

    Article  Google Scholar 

  • Ekmekçi Y, Tanyolac D, Ayhan B (2008) Effects of cadmium on antioxidant enzyme and photosynthetic activities in leaves of two maize cultivars. J Plant Physiol 165:600–611

    Article  CAS  PubMed  Google Scholar 

  • Elobeid M, Göbel C, Feussner I, Polle A (2012) Cadmium interferes with auxin physiology and lignification in poplar. J Exp Bot 63:1413–1421

    Article  CAS  PubMed  Google Scholar 

  • Fang CX, Wang QS, Yu Y, Li QM, Zhang HL, Wu XC, Chen T, Lin WX (2011) Suppression and overexpression of Lsi1 induce differential gene expression in rice under ultraviolet radiation. Plant Growth Regul 65:1–10

    Article  CAS  Google Scholar 

  • Farooq MA, Ali S, Hameed A, Ishaque W, Mahmood K, Iqbal Z (2013) Alleviation of cadmium toxicity by silicon is related to elevated photosynthesis, antioxidant enzymes; suppressed cadmium uptake and oxidative stress in cotton. Ecotoxicol Environ Safe 96:242–249

    Article  CAS  Google Scholar 

  • Guo W, Zhu YG, Liu WJ, Liang YC, Geng CN, Wang SG (2007) Is the effect of silicon on rice uptake of arsenate (AsV) related to internal silicon concentrations, iron plaque and phosphate nutrition? Environ Pollut 148:251–257

    Article  CAS  PubMed  Google Scholar 

  • Hamayun M, Sohn EY, Khan SA, Shinwari ZK, Khan AL, Lee IJ (2010) Silicon alleviates the adverse effects of salinity and drought stress on growth and endogenous plant growth hormones of soybean (Glycine max L.). Pak J Bot 42:1713–1722

    CAS  Google Scholar 

  • He JY, Ren YF, Zhu C, Yan YP, Jiang DA (2008) Effect of Cd on growth, photosynthetic gas exchange, and chlorophyll fluorescence of wild and Cd-sensitive mutant rice. Photosynthetica 46:466–470

    Article  CAS  Google Scholar 

  • He JY, Ren YF, Wang FJ, Pan XB, Zhu C, Jiang DA (2009) Characterization of cadmium uptake and translocation in a cadmium-sensitive mutant of rice (Oryza sativa L. ssp. japonica). Arch Environ Contam Toxicol 57:299–306

    Article  CAS  PubMed  Google Scholar 

  • Hsu YT, Kao CH (2005) Abscisic acid accumulation and cadmium tolerance in rice seedlings. Physiol Plant 124:71–80

    Article  CAS  Google Scholar 

  • Hu YF, Zhou G, Na XF, Yang L, Nan WB, Liu X, Zhang YQ, Li JL, Bi YR (2013) Cadmium interferes with maintenance of auxin homeostasis in Arabidopsis seedlings. J Plant Physiol 170:965–975

    Article  CAS  PubMed  Google Scholar 

  • Hwang SJ, Hamayun M, Kim HY, Na CI, Kim KU, Shin DH, Kim SY, Lee IJ (2007) Effect of nitrogen and silicon nutrition on bioactive gibberellin and growth of rice under field conditions. J Crop Sci Biotechnol 10:281–286

    Google Scholar 

  • Kim YH, Khan AL, Kim DH, Lee SY, Kim KM, Waqas M, Jung HY, Shin JH, Kim JG, Lee IJ (2014) Silicon mitigates heavy metal stress by regulating P-type heavy metal ATPases, Oryza sativa low silicon genes, and endogenous phytohormones. BMC Plant Biol 14:13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YH, Khan AL, Lee IJ (2016) Silicon: a duo synergy for regulating crop growth and hormonal signaling under abiotic stress conditions. Crit Rev Biotechnol 36:1099–1109

    Article  CAS  PubMed  Google Scholar 

  • Kuluev B, Avalbaev A, Mikhaylova E, Nikonorov Y, Berezhneva Z, Chemeris A (2016) Expression profiles and hormonal regulation of tobacco expansin genes and their involvement in abiotic stress response. J Plant Physiol 206:1–12

    Article  CAS  PubMed  Google Scholar 

  • Lagriffoul A, Mocquot B, Mench M, Vangronsveld J (1998) Cadmium toxicity effects on growth, mineral and chlorophyll contents, and activities of stress related enzymes in young maize plants (Zea mays L.). Plant Soil 200:241–250

    Article  CAS  Google Scholar 

  • Lasat MM, Baker AJ, Kochian LV (1996) Physiological characterization of root Zn2+ absorption and translocation to shoots in Zn hyperaccumulator and nonaccumulator species of Thlaspi. Plant Physiol 112:1715–1722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SC, Luan S (2012) ABA signal transduction at the crossroad of biotic and abiotic stress responses. Plant Cell Environ 35:53–60

    Article  CAS  PubMed  Google Scholar 

  • Lin HM, Fang CX, Li YZ, Lin WW, He JY, Lin RY, Lin WX (2016) Effect of silicon on grain yield of rice under cadmium-stress. Acta Physiol Plant 38:186

    Article  CAS  Google Scholar 

  • Lin HM, Fang CX, Li YZ, Lin WW, He JY, Lin RY, Lin WX (2017) Cadmium-stress mitigation through gene expression of rice and silicon addition. Plant Growth Regul 81:91–101

    Article  CAS  Google Scholar 

  • Nawrot TS, Staessen JA, Roels HA, Munters E, Cuypers A, Richart T, Ruttens A, Smeets K, Clijsters H, Vangronsveld J (2010) Cadmium exposure in the population: from health risks to strategies of prevention. Biometals 23:769–782

    Article  CAS  PubMed  Google Scholar 

  • Nwugo CC, Huerta AJ (2008a) Effects of silicon nutrition on cadmium uptake, growth and photosynthesis of rice plants exposed to low-level cadmium. Plant Soil 311:73–86

    Article  CAS  Google Scholar 

  • Nwugo CC, Huerta AJ (2008b) Silicon-induced cadmium resistance in rice (Oryza sativa). J Plant Nutr Soil Sci 171:841–848

    Article  CAS  Google Scholar 

  • Pan XQ, Welti R, Wang XM (2010) Quantitative analysis of major plant hormones in crude plant extracts by high-performance liquid chromatography-mass spectrometry. Nat Protoc 5:986–992

    Article  CAS  PubMed  Google Scholar 

  • Rizwan M, Meunier JD, Davidian JC, Pokrovsky O, Bovet N, Keller C (2016) Silicon alleviates Cd stress of wheat seedlings (Triticum turgidum L. cv. Claudio) grown in hydroponics. Environ Sci Pollut Res 23:1414–1427

    Article  CAS  Google Scholar 

  • Sasaki A, Yamaji N, Yokosho K, Ma JF (2012) Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. Plant Cell 24:2155–2167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao JF, Che J, Yamaji N, Shen RF, Ma JF (2017) Silicon reduces cadmium accumulation by suppressing expression of transporter genes involved in cadmium uptake and translocation in rice. J Exp Bot 68:5641–5651

    Article  CAS  Google Scholar 

  • Shi X, Zhang C, Wang H, Zhang F (2005) Effect of Si on the distribution of Cd in rice seedlings. Plant Soil 272:53–60

    Article  CAS  Google Scholar 

  • Shi G, Cai Q, Liu C, Wu L (2010) Silicon alleviates cadmium toxicity in peanut plants in relation to cadmium distribution and stimulation of antioxidative enzymes. Plant Growth Regul 61:45–52

    Article  CAS  Google Scholar 

  • Song A, Li Z, Zhang J, Xue G, Fan F, Liang Y (2009) Silicon-enhanced resistance to cadmium toxicity in Brassica chinensis L. is attributed to Si-suppressed cadmium uptake and transport and Si-enhanced antioxidant defense capacity. J Hazard Mater 172:74–83

    Article  CAS  PubMed  Google Scholar 

  • Vaculík M, Landberg T, Greger M, Luxová M, Stoláriková M, Lux A (2012) Silicon modifies root anatomy, and uptake and subcellular distribution of cadmium in young maize plants. Ann Bot Lond 110:433–443

    Article  CAS  Google Scholar 

  • Wong CKE, Cobbett CS (2009) HMA P-type ATPases are the major mechanism for root-to-shoot Cd translocation in Arabidopsis thaliana. New Phytol 181:71–78

    Article  CAS  PubMed  Google Scholar 

  • Yamaji N, Ma JF (2007) Spatial distribution and temporal variation of the rice silicon transporter Lsi1. Plant Physiol 143:1306–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida S, Forno DA, Cock JH (1976) Laboratory manual for physiological studies of rice, 3rd edn. The International Rice Research Institute, Manila, pp 1–83

    Google Scholar 

  • Zeng F, Ali S, Zhang H, Ouyang Y, Qiu B, Wu F, Zhang G (2011) The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environ Pollut 159:84–91

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research work was supported by the National Natural Science Foundation of China (Nos. 31271670, 31300336), the National Research Foundation for the Doctoral Program of Higher Education of China (No. 20133515130001) and Fujian-Taiwan Joint Innovative Centre for Germplasm Resources and Cultivation of Crops (Fujian 2011 Program, 2015,75). We also acknowledged financial support for the project from Minjiang University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changxun Fang or Wenxiong Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, H., He, J., Lin, W. et al. Lsi1-regulated Cd uptake and phytohormones accumulation in rice seedlings in presence of Si. Plant Growth Regul 86, 149–157 (2018). https://doi.org/10.1007/s10725-018-0417-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-018-0417-1

Keywords

Navigation