Advertisement

Plant Growth Regulation

, Volume 85, Issue 3, pp 375–387 | Cite as

Genome-wide expression analysis suggests a role for jasmonates in the resistance to blue mold in apple

  • Masoud Ahmadi-AfzadiEmail author
  • Mathilde Orsel
  • Sandra Pelletier
  • Maryline Bruneau
  • Estelle Proux-Wéra
  • Hilde Nybom
  • Jean-Pierre Renou
Original paper
  • 295 Downloads

Abstract

Blue mold, caused by the necrotrophic fungal pathogen Penicillium expansum, causes serious postharvest losses in apple, and threatens human health through production of the potent mycotoxin patulin. Recent studies indicate a quantitative control of resistance against this disease in apple cultivars. A whole genome apple microarray covering 60k transcripts was used to identify gene(s) that appear to be differentially regulated between resistant and susceptible cultivars in P. expansum-infected fruits. A number of potential candidates was encountered among defense- and oxidative stress-related genes, cell wall modification and lignification genes, and genes related to localization and transport. Induction of one cell wall-related gene and three genes involved in the ‘down-stream’ flavonoid biosynthesis pathway, demonstrates the fundamental role of the cell wall as an important barrier, and suggests that fruit flavonoids are involved in the resistance to blue mold. Moreover, exogenous application of the plant hormone methyl jasmonate (MeJA) reduced the symptoms resulting from inoculating apples with P. expansum. This is the first report linking MeJA and activation of cell wall and flavonoid pathway genes to resistance against blue mold in a study comparing different cultivars of domesticated apple. Our results provide an initial categorization of genes that are potentially involved in the resistance mechanism, and should be useful for developing tools for gene marker-assisted breeding of apple cultivars with an improved resistance to blue mold.

Keywords

Candidate gene Cell wall Flavonoid pathway Jasmonic acid Malus × domestica Microarray 

Notes

Acknowledgements

Authors acknowledge the assistance of Jasna Sehic, Charlotte Håhus and Linnea Luthman in harvesting and inoculating the fruit. PlantLink (Sweden) and the ANAN Platform of the SFR QuaSaV (France) are acknowledged for bioinformatics support and microarray facility, respectively.

Funding

This work was supported by grants from Formas and from Einar och Inga Nilssons stiftelse to Hilde Nybom.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

10725_2018_388_MOESM1_ESM.docx (14 kb)
Supplementary material 1 (DOCX 14 KB)
10725_2018_388_MOESM2_ESM.docx (24 kb)
Supplementary material 2 (DOCX 24 KB)
10725_2018_388_MOESM3_ESM.docx (26 kb)
Supplementary material 3 (DOCX 25 KB)
10725_2018_388_MOESM4_ESM.docx (19 kb)
Supplementary material 4 (DOCX 19 KB)
10725_2018_388_MOESM5_ESM.docx (22 kb)
Supplementary material 5 (DOCX 22 KB)
10725_2018_388_MOESM6_ESM.jpg (158 kb)
Supplementary material 6 (JPG 158 KB)
10725_2018_388_MOESM7_ESM.pdf (92 kb)
Supplementary material 7 (PDF 91 KB)

References

  1. Afzal AJ, Wood AJ, Lightfoot DA (2008) Plant receptor-like serine threonine kinases: roles in signaling and plant defense. Mol Plant Microbe Interact 21:507–517.  https://doi.org/10.1094/MPMI-21-5-0507 CrossRefPubMedGoogle Scholar
  2. Ahmadi-Afzadi M (2015) Genetic variation in resistance to fungal storage diseases in apple: inoculation-based screening, transcriptomics and biochemistry. Doctoral dissertation, SLU, Sweden. Acta Universitatis Agriculturae Sueciae, 2015:18. https://pub.epsilon.slu.se/11903/. Accessed 28 Feb 2018
  3. Ahmadi-Afzadi M, Tahir I, Nybom H (2013) Impact of harvesting time and fruit firmness on the tolerance to fungal storage diseases in an apple germplasm collection. Postharvest Biol Technol 82:51–58.  https://doi.org/10.1016/j.postharvbio.2013.03.001 CrossRefGoogle Scholar
  4. Ahmadi-Afzadi M, Nybom H, Ekholm A, Tahir I, Rumpunen K (2015) Biochemical contents of apple peel and flesh affect level of partial resistance to blue mold. Postharvest Biol Technol 110:173–182.  https://doi.org/10.1016/j.postharvbio.2015.08.008 CrossRefGoogle Scholar
  5. Ballester A-R, Norelli J, Burchard E, Abdelfattah A, Levin E, González-Candelas L, Droby S, Wisniewski M (2017) Transcriptomic response of resistant (PI613981–Malus sieversii) and susceptible (“Royal Gala”) genotypes of apple to blue mold (Penicillium expansum) infection. Front Plant Sci 8:1–16.  https://doi.org/10.3389/fpls.2017.01981 CrossRefGoogle Scholar
  6. Bhuiyan NH, Selvaraj G, Wei Y, King J (2009) Role of lignification in plant defense. Plant Signal Behav 4:158–159.  https://doi.org/10.1093/jxb/ern290 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Blazek J, Opatova H, Golias J, Homutova I (2007) Ideotype of apple with resistance to storage diseases. Hortic Sci 34:108–114Google Scholar
  8. Cai H, Chen H, Yi T, Daimon CM, Boyle JP, Peers C, Maudsley S, Martin B (2013) VennPlex—a novel Venn diagram program for comparing and visualizing datasets with differentially regulated datapoints. PLoS ONE 8:e53388.  https://doi.org/10.1371/journal.pone.0053388 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Celton JM, Gaillard S, Bruneau M, Pelletier S, Aubourg S, Martin-Magniette ML, Navarro L, Laurens F, Renou JP (2014) Widespread anti-sense transcription in apple is correlated with siRNA production and indicates a large potential for transcriptional and/or post-transcriptional control. New Phytol 203:287–299.  https://doi.org/10.1111/nph.12787 CrossRefPubMedGoogle Scholar
  10. Chagné D, Krieger C, Rassam M, Sullivan M, Fraser J, Andre C, Pindo M, Troggio M, Gardiner SE, Henry RA et al. (2012) QTL and candidate gene mapping for polyphenolic composition in apple fruit. BMC Plant Biol 12.  https://doi.org/10.1186/1471-2229-12-12
  11. Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676.  https://doi.org/10.1093/bioinformatics/bti610 CrossRefPubMedGoogle Scholar
  12. Costa F, Peace CP, Stella S, Serra S, Musacchi S, Bazzani M, Sansavini S, Van de Weg WE (2010) QTL dynamics for fruit firmness and softening around an ethylene-dependent polygalacturonase gene in apple (Malus × domestica Borkh.). J Exp Bot 61:3029–3039.  https://doi.org/10.1093/jxb/erq130 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Du Z, Zhou X, Ling Y, Zhang Z, Su Z (2010) AgriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res 38:W64-70.  https://doi.org/10.1093/nar/gkq310 CrossRefPubMedGoogle Scholar
  14. Ferrari S, Vairo D, Ausubel FM, Cervone F, De Lorenzo G (2003) Tandemly duplicated Arabidopsis genes that encode polygalacturonase-inhibiting proteins are regulated coordinately by different signal transduction pathways in response to fungal infection. Plant Cell 15:93–106CrossRefPubMedPubMedCentralGoogle Scholar
  15. Ferrari S, Galletti R, Vairo D, Cervone F, De Lorenzo G (2006) Antisense expression of the Arabidopsis thaliana AtPGIP1 gene reduces polygalacturonase-inhibiting protein accumulation and enhances susceptibility to Botrytis cinerea. Mol Plant Microbe Interact 19:931–936.  https://doi.org/10.1094/MPMI-19-0931 CrossRefPubMedGoogle Scholar
  16. Franke R, Hemm MR, Denault JW, Ruegger MO, Humphreys JM, Chapple C (2002) Changes in secondary metabolism and deposition of an unusual lignin in the ref8 mutant of Arabidopsis. Plant J 30:47–59CrossRefPubMedGoogle Scholar
  17. Gasic K, Hernandez A, Korban SS (2004) RNA extraction from different apple tissues rich in polyphenols and polysaccharides for cDNA library construction. Plant Mol Biol Rep 22:437–438.  https://doi.org/10.1007/BF02772687 CrossRefGoogle Scholar
  18. He ZH, Fujiki M, Kohorn BD (1996) A cell wall-associated, receptor-like protein kinase. J Biol Chem 271:19789–19793CrossRefPubMedGoogle Scholar
  19. He ZH, He DZ, Kohorn BD (1998) Requirement for the induced expression of a cell wall associated receptor kinase for survival during the pathogen response. Plant J 14:55–63CrossRefPubMedGoogle Scholar
  20. Hruz T, Laule O, Szabo G, Wessendorp F, Bleuler S, Oertle L, Widmayer P, Gruissem W, Zimmermann P (2008) Genevestigator v3: a reference expression database for the meta-analysis of transcriptomes. Adv Bioinform 2008:420747.  https://doi.org/10.1155/2008/420747 CrossRefGoogle Scholar
  21. James JT, Dubery IA (2001) Inhibition of polygalacturonase from Verticillium dahliae by a polygalacturonase inhibiting protein from cotton. Phytochemistry 57:149–156CrossRefPubMedGoogle Scholar
  22. Janisiewicz WJ, Saftner RA, Conway WS, Forsline PL (2008) Preliminary evaluation of apple germplasm from Kazakhstan for resistance to postharvest blue mold in fruit caused by Penicillium expansum. HortScience 43:420–426Google Scholar
  23. Jensen PJ, Halbrendt N, Fazio G, Makalowska I, Altman N, Praul C, Maximova SN, Ngugi HK, Crassweller RM, Travis JW et al. (2012) Rootstock-regulated gene expression patterns associated with fire blight resistance in apple. BMC Genomics 13.  https://doi.org/10.1186/1471-2164-13-9
  24. Johnston JW, Hewett EW, Hertog MLATM. (2002) Postharvest softening of apple (Malus domestica) fruit: a review. N Z J Crop Hortic Sci 30:145–160.  https://doi.org/10.1080/01140671.2002.9514210 CrossRefGoogle Scholar
  25. Johnston JW, Gunaseelan K, Pidakala P, Wang M, Schaffer RJ (2009) Co-ordination of early and late ripening events in apples is regulated through differential sensitivities to ethylene. J Exp Bot 60:2689–2699.  https://doi.org/10.1093/jxb/erp122 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Joubert DA, Slaughter AR, Kemp G, Becker JVW, Krooshof GH, Bergmann C, Benen J, Pretorius IS, Vivier MA (2006) The grapevine polygalacturonase-inhibiting protein (VvPGIP1) reduces Botrytis cinerea susceptibility in transgenic tobacco and differentially inhibits fungal polygalacturonases. Transgenic Res 15:687–702.  https://doi.org/10.1007/s11248-006-9019-1 CrossRefPubMedGoogle Scholar
  27. Jurick WM, Janisiewicz WJ, Saftner RA, Vico I, Gaskins VL, Park E, Forsline PL, Fazio G, Conway WS (2011) Identification of wild apple germplasm (Malus spp.) accessions with resistance to the postharvest decay pathogens Penicillium expansum and Colletotrichum acutatum. Plant Breed 130:481–486.  https://doi.org/10.1111/j.1439-0523.2011.01849.x CrossRefGoogle Scholar
  28. Lee HD, Bae H, Kang IK, Byun JK, Kang SG (2006) Characterization of an apple polygalacturonase-inhibiting protein (PGIP) that specifically inhibits an endopolygalacturonase (PG) purified from apple fruits infected with Botryosphaeria dothidea. J Microbiol Biotechnol 16:1192–1200Google Scholar
  29. Liu HZ, Wang XE, Zhang HJ, Yang YY, Ge XC, Song FM (2008) A rice serine carboxypeptidase-like gene OsBISCPL1 is involved in regulation of defense responses against biotic and oxidative stress. Gene 420:57–65.  https://doi.org/10.1016/j.gene.2008.05.006 CrossRefPubMedGoogle Scholar
  30. Longhi S, Moretto M, Viola R, Velasco R, Costa F (2012) Comprehensive QTL mapping survey dissects the complex fruit texture physiology in apple (Malus × domestica Borkh.). J Exp Bot 63:1107–1121.  https://doi.org/10.1093/jxb/err326 CrossRefPubMedGoogle Scholar
  31. Mann HS, Alton JJ, Kim SH, Tong CBS (2008) Differential expression of cell-wall-modifying genes and novel cDNAs in apple fruit during storage. J Am Soc Hortic Sci 133:152–157Google Scholar
  32. McHale L, Tan XP, Koehl P, Michelmore RW (2006) Plant NBS-LRR proteins: adaptable guards. Genome Biol 7:212.  https://doi.org/10.1186/gb-2006-7-4-212 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Mehli L, Schaart JG, Kjellsen TD, Tran DH, Salentijn EMJ, Schouten HJ, Iversen TH (2004) A gene encoding a polygalacturonase-inhibiting protein (PGIP) shows developmental regulation and pathogen-induced expression in strawberry. New Phytol 163:99–110.  https://doi.org/10.1111/j.1469-8137.2004.01088.x CrossRefGoogle Scholar
  34. Morant M, Bak S, Møller BL, Werck-Reichhart D (2003) Plant cytochromes P450: tools for pharmacology, plant protection and phytoremediation. Curr Opin Biotechnol 14:151–162CrossRefPubMedGoogle Scholar
  35. Morimoto T, Hiramatsu Y, Banno K (2013) A Major QTL controlling earliness of fruit maturity linked to the red leaf/red flesh trait in apple cv. ‘Maypole’. J Jpn Soc Hortic Sci 82:97–105.  https://doi.org/10.2503/jjshs1.82.97 CrossRefGoogle Scholar
  36. Mugford ST, Qi XQ, Bakht S, Hill L, Wegel E, Hughes RK, Papadopoulou K, Melton R, Philo M, Sainsbury F et al (2009) A serine carboxypeptidase-like acyltransferase is required for synthesis of antimicrobial compounds and disease resistance in oats. Plant Cell 21:2473–2484.  https://doi.org/10.1105/tpc.109.065870 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Naeem Abadi T, Keshavarzi M, Alaee H, Hajnagari H, Hoseinava S (2014) Blue mold (Penicillium expansum) decay resistance in apple cultivars, and its association with fruit physicochemical traits. J Agric Sci Technol 16:635–644Google Scholar
  38. Noordermeer MA, Veldink GA, Vliegenthart JFG (2001) Fatty acid hydroperoxide lyase: a plant cytochrome P450 enzyme involved in wound healing and pest resistance. ChemBioChem 2:494–504CrossRefPubMedGoogle Scholar
  39. Norelli JL, Wisniewski M, Fazio G, Burchard E, Gutierrez B, Levin E, Droby S (2017) Genotyping-by-sequencing markers facilitate the identification of quantitative trait loci controlling resistance to Penicillium expansum in Malus sieversii. PLoS ONE 12:1–24.  https://doi.org/10.1371/journal.pone.0172949 CrossRefGoogle Scholar
  40. Oelofse D, Dubery IA, Meyer R, Arendse MS, Gazendarn I, Berger DK (2006) Apple polygalacturonase inhibiting protein1 expressed in transgenic tobacco inhibits polygalacturonases from fungal pathogens of apple and the anthracnose pathogen of lupins. Phytochemistry 67:255–263.  https://doi.org/10.1016/j.phytochem.2005.10.029 CrossRefPubMedGoogle Scholar
  41. Parravicini G, Gessler C, Denance C, Lasserre-Zuber P, Vergne E, Brisset MN, Patocchi A, Durel CE, Broggini GAL (2011) Identification of serine/threonine kinase and nucleotide-binding site-leucine-rich repeat (NBS-LRR) genes in the fire blight resistance quantitative trait locus of apple cultivar ‘Evereste’. Mol Plant Pathol 12:493–505.  https://doi.org/10.1111/j.1364-3703.2010.00690.x CrossRefPubMedGoogle Scholar
  42. Pelletier MK, Burbulis IE, Winkel-Shirley B (1999) Disruption of specific flavonoid genes enhances the accumulation of flavonoid enzymes and end-products in Arabidopsis seedlings. Plant Mol Biol 40:45–54CrossRefPubMedGoogle Scholar
  43. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 29:e45CrossRefPubMedPubMedCentralGoogle Scholar
  44. Pourcel L, Routaboul JM, Kerhoas L, Caboche M, Lepiniec L, Debeaujon I (2005) TRANSPARENT TESTA10 encodes a laccase-like enzyme involved in oxidative polymerization of flavonoids in Arabidopsis seed coat. Plant Cell 17:2966–2980.  https://doi.org/10.1105/tpc.105.035154 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Prusky D, McEvoy JL, Saftner R, Conway WS, Jones R (2004) Relationship between host acidification and virulence of Penicillium spp. on apple and citrus fruit. Phytopathology 94:44–51.  https://doi.org/10.1094/PHYTO.2004.94.1.44 CrossRefPubMedGoogle Scholar
  46. R Development Core Team (2013) R: a language and environment for statistical computing. http://www.R-project.org. Accessed 28 Feb 2018
  47. Ranocha P, Chabannes M, Chamayou S, Danoun S, Jauneau A, Boudet AM, Goffner D (2002) Laccase down-regulation causes alterations in phenolic metabolism and cell wall structure in poplar. Plant Physiol 129:145–155.  https://doi.org/10.1104/pp.010988 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Rogers LA, Dubos C, Surman C, Willment J, Cullis IF, Mansfield SD, Campbell MM (2005) Comparison of lignin deposition in three ectopic lignification mutants. New Phytol 168:123–140.  https://doi.org/10.1111/j.1469-8137.2005.01496.x CrossRefPubMedGoogle Scholar
  49. Sarowar S, Zhao YF, Soria-Guerra RE, Ali S, Zheng DM, Wang DP, Korban SS (2011) Expression profiles of differentially regulated genes during the early stages of apple flower infection with Erwinia amylovora. J Exp Bot 62:4851–4861.  https://doi.org/10.1093/jxb/err147 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504.  https://doi.org/10.1101/gr.1239303 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Smith RB, Loucheede EC, Franklin EW, McMillan I (1979) The starch-iodine test for determining stage of maturation in apples. Can J Plant Sci 59:725–735CrossRefGoogle Scholar
  52. Smyth GK (2005) Limma: linear models for microarray data. Bioinformatics and computational biology solutions using R and Bioconductor. pp 397–420.  https://doi.org/10.1007/0-387-29362-0_23
  53. Soria-Guerra RE, Rosales-Mendoza S, Gasic K, Wisniewski ME, Band M, Korban SS (2011) Gene expression is highly regulated in early developing fruit of apple. Plant Mol Biol Rep 29:885–897.  https://doi.org/10.1007/s11105-011-0300-y CrossRefGoogle Scholar
  54. Stumpe M, Kandzia R, Gobel C, Rosahl S, Feussner I (2001) A pathogen-inducible divinyl ether synthase (CYP74D) from elicitor-treated potato suspension cells. FEBS Lett 507:371–376.  https://doi.org/10.1016/S0014-5793(01)03019-8 CrossRefPubMedGoogle Scholar
  55. Sturn A, Quackenbush J, Trajanoski Z (2002) Genesis: cluster analysis of microarray data. Bioinformatics 18:207–208CrossRefPubMedPubMedCentralGoogle Scholar
  56. Supek F, Bošnjak M, Škunca N, Šmuc T (2011) REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS ONE 6.  https://doi.org/10.1371/journal.pone.0021800
  57. Tahir I (2014) Vad är det som förtär äpple under lagring? SLU Landskapsarkitektur Trädgård Växtproduktionsvetenskap, Rapportserie, 2014:14. https://pub.epsilon.slu.se/11224. Accessed 28 Feb 2018
  58. Tahir I, Nybom H (2013) Tailoring organic apples by cultivar selection, production system, and post-harvest treatment to improve quality and storage life. HortScience 48:92–101Google Scholar
  59. Tahir II, Johansson E, Olsson ME (2007) Improvement of quality and storability of apple cv. Aroma by adjustment of some pre-harvest conditions. Sci Hortic 112:164–171CrossRefGoogle Scholar
  60. Tahir I, Nybom H, Ahmadi-Afzadi M, Roen K, Sehic J, Roen D (2015) Susceptibility to blue mold caused by Penicillium expansum in apple cultivars adapted to a cool climate. Eur J Hortic Sci 79:218–225.  https://doi.org/10.17660/eJHS.2015/80.3.4 CrossRefGoogle Scholar
  61. Torres R, Valentines MC, Usall J, Vinas I, Larrigaudiere C (2003) Possible involvement of hydrogen peroxide in the development of resistance mechanisms in ‘Golden Delicious’ apple fruit. Postharvest Biol Technol 27:235–242.  https://doi.org/10.1016/S0925-5214(02)00110-2 CrossRefGoogle Scholar
  62. Trognitz F, Manosalva P, Gysin R, Nino-Liu D, Simon R, Herrera MD, Trognitz B, Ghislain M, Nelson R (2002) Plant defense genes associated with quantitative resistance to potato late blight in Solanum phureja x dihaploid S. tuberosum hybrids. Mol Plant Microbe Interact 15:587–597.  https://doi.org/10.1094/MPMI.2002.15.6.587 CrossRefPubMedGoogle Scholar
  63. Valiuškaitė A, Kviklienė N, Kviklys D, Lanauskas J (2006) Post-harvest fruit rot incidence depending on apple maturity. Agron Res 4:427–431Google Scholar
  64. Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D et al (2010) The genome of the domesticated apple (Malus × domestica Borkh.). Nat Genet 42:833–839.  https://doi.org/10.1038/ng.654 CrossRefPubMedGoogle Scholar
  65. Venisse JS, Malnoy M, Faize M, Paulin JP, Brisset MN (2002) Modulation of defense responses of Malus spp. during compatible and incompatible interactions with Erwinia amylovora. Mol Plant Microbe Interact 15:1204–1212.  https://doi.org/10.1094/MPMI.2002.15.12.1204 CrossRefPubMedGoogle Scholar
  66. Verica JA, He ZH (2002) The cell wall-associated kinase (WAK) and WAK-like kinase gene family. Plant Physiol 129:455–459.  https://doi.org/10.1104/pp.011028 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Vilanova L, Teixido N, Torres R, Usall J, Vinas I (2012) The infection capacity of P. expansum and P. digitatum on apples and histochemical analysis of host response. Int J Food Microbiol 157:360–367.  https://doi.org/10.1016/j.ijfoodmicro.2012.06.005 CrossRefPubMedGoogle Scholar
  68. Vilanova L, Vinas I, Torres R, Usall J, Buron-Moles G, Teixido N (2014a) Acidification of apple and orange hosts by Penicillium digitatum and Penicillium expansum. Int J Food Microbiol 178:39–49.  https://doi.org/10.1016/j.ijfoodmicro.2014.02.022 CrossRefPubMedGoogle Scholar
  69. Vilanova L, Wisniewski M, Norelli J, Vinas I, Torres R, Usall J, Phillips J, Droby S, Teixido N (2014b) Transcriptomic profiling of apple in response to inoculation with a pathogen (Penicillium expansum) and a non-pathogen (Penicillium digitatum). Plant Mol Biol Rep 32:566–583.  https://doi.org/10.1007/s11105-013-0676-y CrossRefGoogle Scholar
  70. Vimolmangkang S, Zheng DM, Han YP, Khan MA, Soria-Guerra RE, Korban SS (2014) Transcriptome analysis of the exocarp of apple fruit identifies light-induced genes involved in red color pigmentation. Gene 534:78–87.  https://doi.org/10.1016/j.gene.2013.10.007 CrossRefPubMedGoogle Scholar
  71. Wang K, Jin P, Han L, Shang H, Tang S, Rui H, Duan Y, Kong F, Kai X, Zheng Y (2014) Methyl jasmonate induces resistance against Penicillium citrinum in Chinese bayberry by priming of defense responses. Postharvest Biol Technol 98:90–97.  https://doi.org/10.1016/j.postharvbio.2014.07.009 CrossRefGoogle Scholar
  72. Winkel-Shirley B (2001) Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 126:485–493.  https://doi.org/10.1104/pp.126.2.485 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Yang Y, Shah J, Klessig DF (1997) Signal perception and transduction in plant defense responses. Genes Dev 11:1621–1639CrossRefPubMedGoogle Scholar
  74. Yao HJ, Tian SP (2005) Effects of a biocontrol agent and methyl jasmonate on postharvest diseases of peach fruit and the possible mechanisms involved. J Appl Microbiol 98:941–950.  https://doi.org/10.1111/j.1365-2672.2004.02531.x CrossRefPubMedGoogle Scholar
  75. Yao CL, Conway WS, Ren RH, Smith D, Ross GS, Sams CE (1999) Gene encoding polygalacturonase inhibitor in apple fruit is developmentally regulated and activated by wounding and fungal infection. Plant Mol Biol 39:1231–1241CrossRefPubMedGoogle Scholar
  76. Zhang DS, Hrmova M, Wan CH, Wu CF, Balzen J, Cai W, Wang J, Densmore LD, Fincher GB, Zhang H et al (2004) Members of a new group of chitinase-like genes are expressed preferentially in cotton cells with secondary walls. Plant Mol Biol 54:353–372.  https://doi.org/10.1023/B:PLAN.0000036369.55253.dd CrossRefPubMedGoogle Scholar
  77. Zhong RQ, Kays SJ, Schroeder BP, Ye ZH (2002) Mutation of a chitinase-like gene causes ectopic deposition of lignin, aberrant cell shapes, and overproduction of ethylene. Plant Cell 14:165–179CrossRefPubMedPubMedCentralGoogle Scholar
  78. Zhu YM, Zheng P, Varanasi V, Shin SB, Main D, Curry E, Mattheis JP (2012) Multiple plant hormones and cell wall metabolism regulate apple fruit maturation patterns and texture attributes. Tree Genet Genome 8:1389–1406.  https://doi.org/10.1007/s11295-012-0526-3 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Masoud Ahmadi-Afzadi
    • 1
    • 2
    Email author
  • Mathilde Orsel
    • 3
  • Sandra Pelletier
    • 3
  • Maryline Bruneau
    • 3
  • Estelle Proux-Wéra
    • 4
    • 5
  • Hilde Nybom
    • 2
  • Jean-Pierre Renou
    • 3
  1. 1.Department of Biotechnology, Institute of Science and High Technology and Environmental SciencesGraduate University of Advanced TechnologyKermanIran
  2. 2.Department of Plant Breeding–BalsgårdSwedish University of Agricultural SciencesKristianstadSweden
  3. 3.IRHS, INRA, AGROCAMPUS-OuestUniversité d’AngersBeaucouzé CedexFrance
  4. 4.Science for Life Laboratory, Department of Biochemistry and BiophysicsStockholm UniversitySolnaSweden
  5. 5.PlantLink, Department of Plant Protection BiologySwedish University of Agricultural SciencesAlnarpSweden

Personalised recommendations