The trans and cis zeatin isomers play different roles in regulating growth inhibition induced by high nitrate concentrations in maize

Abstract

Abscisic acid (ABA), auxins, and cytokinins (CKs) are known to be closely linked to nitrogen signaling. In particular, CKs control the effects of nitrate availability on plant growth. Our group has shown that treatment with high nitrate concentrations limits root growth and leaf development in maize, and conditions the development of younger roots and leaves. CKs also affect source-sink relationships in plants. Based on these results, we hypothesized that CKs regulate the source-sink relationship in maize via a mechanism involving complex crosstalk with the main auxin indole-3-acetic acid (IAA) and ABA. To evaluate this hypothesis, various CK metabolites, IAA, and ABA were quantified in the roots and in source and sink leaves of maize plants treated with high and normal nitrate concentrations. The data obtained suggest that the cis and trans isomers of zeatin play completely distinct roles in maize growth regulation by a complex crosstalk with IAA and ABA. We demonstrate that while trans-zeatin (tZ) and isopentenyladenine (iP) regulate nitrate uptake and thus control final leaf sizes, cis-zeatin (cZ) regulates source and sink strength, and thus controls leaf development. The implications of these findings relating to the roles of ABA and IAA in plants’ responses to varying nitrate concentrations are also discussed.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

ABA:

Abscisic acid

IAA:

Indole-3-acetic acid

iP:

Isopentenyl adenine

tZ:

Trans-zeatin

cZ:

Cis-zeatin

References

  1. Avramova V, Sprangers K, Beemster GTS (2015) The maize leaf: another perspective on growth regulation. Trends Plant Sci 20:787–797. https://doi.org/10.1016/J.TPLANTS.2015.09.002

    CAS  Article  PubMed  Google Scholar 

  2. Bahaji A, Sánchez-López ÁM, De Diego N et al (2015) Plastidic phosphoglucose isomerase is an important determinant of starch accumulation in mesophyll cells, growth, photosynthetic capacity, and biosynthesis of plastidic cytokinins in Arabidopsis. PLoS ONE 10:e0119641. https://doi.org/10.1371/journal.pone.0119641

    Article  PubMed  PubMed Central  Google Scholar 

  3. Behr M, Motyka V, Weihmann F et al (2012) Remodeling of cytokinin metabolism at infection sites of Colletotrichum graminicola on maize leaves. Mol Plant Microbe Interact 25:1073–1082. https://doi.org/10.1094/MPMI-01-12-0012-R

    CAS  Article  PubMed  Google Scholar 

  4. Cowan AK, Freeman M, Björkman PO et al (2005) Effects of senescence-induced alteration in cytokinin metabolism on source-sink relationships and ontogenic and stress-induced transitions in tobacco. Planta 221:801–814. https://doi.org/10.1007/s00425-005-1489-5

    CAS  Article  PubMed  Google Scholar 

  5. Criado MV, Caputo C, Roberts IN et al (2009) Cytokinin-induced changes of nitrogen remobilization and chloroplast ultrastructure in wheat (Triticum aestivum). J Plant Physiol 166:1775–1785. https://doi.org/10.1016/j.jplph.2009.05.007

    CAS  Article  PubMed  Google Scholar 

  6. Criado MV, Veliz CG, Roberts IN, Caputo C (2017) Phloem transport of amino acids is differentially altered by phosphorus deficiency according to the nitrogen availability in young barley plants. Plant Growth Regul 82:151–160. https://doi.org/10.1007/s10725-017-0247-6

    CAS  Article  Google Scholar 

  7. Echarte L, Rothstein S, Tollenaar M (2008) The response of leaf photosynthesis and dry matter accumulation to nitrogen supply in an older and a newer maize hybrid. Crop Sci 48:656–665. https://doi.org/10.2135/cropsci2007.06.0366

    CAS  Article  Google Scholar 

  8. Floková K, Tarkowská D, Miersch O et al (2014) UHPLC-MS/MS based target profiling of stress-induced phytohormones. Phytochemistry 105:147–157. https://doi.org/10.1016/j.phytochem.2014.05.015

    Article  PubMed  Google Scholar 

  9. Forde BG (2002) Local and long-range sinnaling pathways regulating plant responses to nitrate. Annu Rev Plant Biol 53:203–224. https://doi.org/10.1146/annurev.arplant.53.100301.135256

    CAS  Article  PubMed  Google Scholar 

  10. Gajdosova S, Spichal L, Kaminek M et al (2011) Distribution, biological activities, metabolism, and the conceivable function of cis-zeatin-type cytokinins in plants. J Exp Bot 62:2827–2840. https://doi.org/10.1093/jxb/erq457

    CAS  Article  PubMed  Google Scholar 

  11. Ha S, Vankova R, Yamaguchi-Shinozaki K et al (2012) Cytokinins: metabolism and function in plant adaptation to environmental stresses. Trends Plant Sci 17:172–179. https://doi.org/10.1016/j.tplants.2011.12.005

    CAS  Article  PubMed  Google Scholar 

  12. Hillier J, Makowski D, Andrieu B (2005) Maximum likelihood inference and bootstrap methods for plant organ growth via multi-phase kinetic models and their application to maize. Ann Bot 96:137–148. https://doi.org/10.1093/aob/mci159

    Article  PubMed  PubMed Central  Google Scholar 

  13. Humplík JF, Lazár D, Fürst T et al (2015) Automated integrative high-throughput phenotyping of plant shoots: a case study of the cold-tolerance of pea (Pisum sativum L.). Plant Methods 11:20. https://doi.org/10.1186/s13007-015-0063-9

    Article  PubMed  PubMed Central  Google Scholar 

  14. Jameson PE, Song J (2016) Cytokinin: A key driver of seed yield. J Exp Bot 67:593–606. https://doi.org/10.1093/jxb/erv461

    CAS  Article  PubMed  Google Scholar 

  15. Kaschuk G, Hungria M, Leffelaar PA et al (2010) Differences in photosynthetic behaviour and leaf senescence of soybean (Glycine max [L.] Merrill) dependent on N2 fixation or nitrate supply. Plant Biol 12:60–69. https://doi.org/10.1111/j.1438-8677.2009.00211.x

    CAS  Article  PubMed  Google Scholar 

  16. Kiba T, Kudo T, Kojima M, Sakakibara H (2011) Hormonal control of nitrogen acquisition: roles of auxin, abscisic acid, and cytokinin. J Exp Bot 62:1399–1409. https://doi.org/10.1093/jxb/erq410

    CAS  Article  PubMed  Google Scholar 

  17. Kiba T, Takei K, Kojima M, Sakakibara H (2013) Side-chain modification of cytokinins controls shoot growth in Arabidopsis. Dev Cell 27:452–461. https://doi.org/10.1016/j.devcel.2013.10.004

    CAS  Article  PubMed  Google Scholar 

  18. Krouk G (2016) Hormones and nitrate: a two-way connection. Plant Mol Biol 91:599–606. https://doi.org/10.1007/s11103-016-0463-x

    CAS  Article  PubMed  Google Scholar 

  19. LaMotte C, Li X, Jacobs W, Epstein E (2002) Quantitative relationship between indole-3-acetic acid and abscisic acid during leaf growth in Coleus blumei. Plant Growth Regul 36:19–25. https://doi.org/10.1023/A:1014703209735

    CAS  Article  Google Scholar 

  20. Lichtenthaler HK, Buschmann C, Knapp M (2005) How to correctly determine the different chlorophyll fluorescence parameters and the chlorophyll fluorescence decrease ratio RFd of leaves with the PAM fluorometer. Photosynthetica 43:379–393. https://doi.org/10.1007/s11099-005-0062-6

    CAS  Article  Google Scholar 

  21. Liu J, Moore S, Chen C, Lindsey K (2017) Crosstalk complexities between auxin, cytokinin, and ethylene in Arabidopsis root development: From experiments to systems modeling, and back again. Mol Plant 10:1480–1496. https://doi.org/10.1016/J.MOLP.2017.11.002

    CAS  Article  PubMed  Google Scholar 

  22. Mok MC, Martin RC, Mok DWS (2000) Cytokinins: Biosynthesis metabolism and perception. Vitr Cell Dev Biol 36:102–107. https://doi.org/10.1007/s11627-000-0021-7

    CAS  Article  Google Scholar 

  23. Nawaz MA, Wang L, Jiao Y et al (2017) Pumpkin rootstock improves nitrogen use efficiency of watermelon scion by enhancing nutrient uptake, cytokinin content, and expression of nitrate reductase genes. Plant Growth Regul 82:233–246. https://doi.org/10.1007/s10725-017-0254-7

    CAS  Article  Google Scholar 

  24. O’Neill PM, Shanahan JF, Schepers JS (2006) Use of chlorophyll fluorescence assessments to differentiate corn hybrid response to variable water conditions. Crop Sci 46:681–687. https://doi.org/10.2135/cropsci2005.06-0170

    Article  Google Scholar 

  25. Osorio S, Ruan Y-L, Fernie AR (2014) An update on source-to-sink carbon partitioning in tomato. Front Plant Sci 5:516. https://doi.org/10.3389/fpls.2014.00516

    Article  PubMed  PubMed Central  Google Scholar 

  26. Pertry I, Vaclavikova K, Depuydt S et al (2009) Identification of Rhodococcus fascians cytokinins and their modus operandi to reshape the plant. Proc Natl Acad Sci 106:929–934. https://doi.org/10.1073/pnas.0811683106

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Roitsch T, Ehneß R (2000) Regulation of source/sink relations by cytokinins. Plant Growth Regul 32:359–367. https://doi.org/10.1023/A:1010781500705

    CAS  Article  Google Scholar 

  28. Saiz-Fernández I, De Diego N, Sampedro MC et al (2015) High nitrate supply reduces growth in maize, from cell to whole plant. J Plant Physiol 173:120–129. https://doi.org/10.1016/j.jplph.2014.06.018

    Article  PubMed  Google Scholar 

  29. Saiz-Fernández I, De Diego N, Brzobohatý B et al (2017) The imbalance between C and N metabolism during high nitrate supply inhibits photosynthesis and overall growth in maize (Zea mays L.). Plant Physiol Biochem 120:213–222. https://doi.org/10.1016/j.plaphy.2017.10.006

    Article  PubMed  Google Scholar 

  30. Sakakibara H, Takei K, Hirose N (2006) Interactions between nitrogen and cytokinin in the regulation of metabolism and development. Trends Plant Sci 11:440–448. https://doi.org/10.1016/j.tplants.2006.07.004

    CAS  Article  PubMed  Google Scholar 

  31. Saleem M, Lamkemeyer T, Schutzenmeister A et al (2010) Specification of cortical parenchyma and stele of maize primary roots by asymmetric levels of auxin, cytokinin, and cytokinin-regulated proteins. Plant Physiol 152:4–18. https://doi.org/10.1104/pp.109.150425

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Schäfer M, Brütting C, Meza-Canales ID et al (2015) The role of cis-zeatin-type cytokinins in plant growth regulation and mediating responses to environmental interactions. J Exp Bot 66:4873–4884. https://doi.org/10.1093/jxb/erv214

    Article  PubMed  PubMed Central  Google Scholar 

  33. Schluter U, Mascher M, Colmsee C et al (2012) Maize source leaf adaptation to nitrogen deficiency affects not only nitrogen and carbon metabolism but also control of phosphate homeostasis. Plant Physiol 160:1384–1406. https://doi.org/10.1104/pp.112.204420

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sharp RE (2002) Interaction with ethylene: changing views on the role of abscisic acid in root and shoot growth responses to water stress. Plant Cell Environ 25:211–222. https://doi.org/10.1046/j.1365-3040.2002.00798.x

    CAS  Article  PubMed  Google Scholar 

  35. Signora L, De Smet I, Foyer CH, Zhang H (2001) ABA plays a central role in mediating the regulatory effects of nitrate on root branching in Arabidopsis. Plant J 28:655–662. https://doi.org/10.1046/j.1365-313x.2001.01185.x

    CAS  Article  PubMed  Google Scholar 

  36. Šimura J, Spíchal L, Adamec L et al (2016) Cytokinin, auxin and physiological polarity in the aquatic carnivorous plants Aldrovanda vesiculosa and Utricularia australis. Ann Bot 117:1037–1044. https://doi.org/10.1093/aob/mcw020

    Article  PubMed  PubMed Central  Google Scholar 

  37. Stirk WA, Gold JD, Novák O et al (2005) Changes in endogenous cytokinins during germination and seedling establishment of Tagetes minuta L. Plant Growth Regul 47:1–7. https://doi.org/10.1007/s10725-005-1767-z

    CAS  Article  Google Scholar 

  38. Su Y-H, Liu Y-B, Zhang X-S (2011) Auxin–cytokinin interaction regulates meristem development. Mol Plant 4:616–625. https://doi.org/10.1093/mp/ssr007

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Svačinová J, Novák O, Plačková L et al (2012) A new approach for cytokinin isolation from Arabidopsis tissues using miniaturized purification: pipette tip solid-phase extraction. Plant Methods 8:17. https://doi.org/10.1186/1746-4811-8-17

    Article  PubMed  PubMed Central  Google Scholar 

  40. Takei K, Sakakibara H, Taniguchi M, Sugiyama T (2001) Nitrogen-dependent accumulation of cytokinins in root and the translocation to leaf: implication of cytokinin species that induces gene expression of maize response regulator. Plant Cell Physiol 42:85–93. https://doi.org/10.1093/pcp/pce009

    CAS  Article  PubMed  Google Scholar 

  41. Takei K, Ueda N, Aoki K et al (2004) AtIPT3 is a key determinant of nitrate-dependent cytokinin biosynthesis in Arabidopsis. Plant Cell Physiol 45:1053–1062. https://doi.org/10.1093/pcp/pch119

    CAS  Article  PubMed  Google Scholar 

  42. Tanaka M, Takei K, Kojima M et al (2006) Auxin controls local cytokinin biosynthesis in the nodal stem in apical dominance. Plant J 45:1028–1036. https://doi.org/10.1111/j.1365-313X.2006.02656.x

    CAS  Article  PubMed  Google Scholar 

  43. Tian Q, Chen F, Zhang F, Mi G (2005) Possible involvement of cytokinin in nitrate-mediated root growth in maize. Plant Soil 277:185–196. https://doi.org/10.1007/s11104-005-6837-5

    CAS  Article  Google Scholar 

  44. Tian Q, Chen F, Liu J et al (2008) Inhibition of maize root growth by high nitrate supply is correlated with reduced IAA levels in roots. J Plant Physiol 165:942–951. https://doi.org/10.1016/j.jplph.2007.02.011

    CAS  Article  PubMed  Google Scholar 

  45. Veach YK, Martin RC, Mok DWS et al (2003) O-glucosylation of cis-zeatin in maize. Characterization of genes, enzymes, and endogenous cytokinins. Plant Physiol 131:1374–1380. https://doi.org/10.1104/pp.017210

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. Vyroubalova S, Vaclavikova K, Tureckova V et al (2009) Characterization of new maize genes putatively involved in cytokinin metabolism and their expression during osmotic stress in relation to cytokinin levels. Plant Physiol 151:433–447. https://doi.org/10.1104/pp.109.142489

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Werner T, Holst K, Pors Y et al (2008) Cytokinin deficiency causes distinct changes of sink and source parameters in tobacco shoots and roots. J Exp Bot 59:2659–2672. https://doi.org/10.1093/jxb/ern134

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. Wu X-J, Wang G-L, Song X et al (2016) Regulation of auxin accumulation and perception at different developmental stages in carrot. Plant Growth Regul 80:243–251. https://doi.org/10.1007/s10725-016-0161-3

    CAS  Article  Google Scholar 

  49. Yaronskaya E, Vershilovskaya I, Poers Y et al (2006) Cytokinin effects on tetrapyrrole biosynthesis and photosynthetic activity in barley seedlings. Planta 224:700–709. https://doi.org/10.1007/s00425-006-0249-5

    CAS  Article  PubMed  Google Scholar 

  50. Yonekura-Sakakibara K, Kojima M, Yamaya T, Sakakibara H (2004) Molecular characterization of cytokinin-responsive histidine kinases in maize. Differential ligand preferences and response to cis-zeatin. Plant Physiol 134:1654–1661. https://doi.org/10.1104/pp.103.037176.1654

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. Zalabák D, Galuszka P, Mrízová K et al (2014) Biochemical characterization of the maize cytokinin dehydrogenase family and cytokinin profiling in developing maize plantlets in relation to the expression of cytokinin dehydrogenase genes. Plant Physiol Biochem 74:283–293. https://doi.org/10.1016/j.plaphy.2013.11.020

    Article  PubMed  Google Scholar 

  52. Zhao Y (2008) The role of local biosynthesis of auxin and cytokinin in plant development. Curr Opin Plant Biol 11:16–22. https://doi.org/10.1016/j.pbi.2007.10.008

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

The present authors would like to thank the company “sees-editing” for the English correction.

Funding

This work was partially supported by MEC-INIA (Grant RTA2010-00041-CO2-02) and GRUPO Gobierno-Vasco-IT1022-16, by the Ministry of Education, Youth and Sports of the Czech Republic (Grant LO1204 from the National Program of Sustainability) and the institutional funds of Palacky University.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nuria De Diego.

Additional information

Maite Lacuesta, Iñigo Saiz-Fernández, and Kateřina Podlešáková have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 11 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lacuesta, M., Saiz-Fernández, I., Podlešáková, K. et al. The trans and cis zeatin isomers play different roles in regulating growth inhibition induced by high nitrate concentrations in maize. Plant Growth Regul 85, 199–209 (2018). https://doi.org/10.1007/s10725-018-0383-7

Download citation

Keywords

  • Cytokinins
  • IAA
  • ABA
  • Growth
  • Fluorescence
  • Nitrate
  • Sink
  • Source