Plant Growth Regulation

, Volume 85, Issue 1, pp 27–39 | Cite as

Comparative transcriptome discovery and elucidation of the mechanism of long noncoding RNAs during vernalization in Brassica rapa

  • Tongkun Liu
  • Peng Wu
  • Qian Wang
  • Wenli Wang
  • Changwei Zhang
  • Feifei Sun
  • Zhaokun Liu
  • Ying Li
  • Xilin Hou
Original paper


Flowering time is an important agronomic trait in Brassica rapa (B. rapa). However, our current understanding of the role of long noncoding RNAs (lncRNAs) in flowering time responded to vernalization is limited. The rapid development of the omics sequencing technology has facilitated the identification of thousands of lncRNAs in various plant species. Here, we used comparative transcriptome analysis between control and vernalized B. rapa to identify differentially expressed genes (DEGs) and lncRNAs (DELs). A total of 300 DEGs and 254 DELs were identified. Co-localization networks consisting of 128 DEGs and 127 DELs were established, followed by analyses of hierarchical categories, functional annotations, and correlation from mRNA-to-lncRNA. We found that the BraZF-HD21 (Bra026812) gene which responds to photoperiods and vernalization is correlated with lncRNA TCONS_00035129. The correlated genes that were mapped to the plant hormone signal transduction pathway and increased gibberellin A3 (GA3) content demonstrated that vernalization influences plant hormone levels. These findings suggest that vernalization alters the process of hormone biosynthesis, which in turn regulates flowering. This study provides an approach to elucidation of the regulatory mechanism of lncRNAs during vernalization in B. rapa.


Comparative transcriptome Brassica rapa Vernalization LncRNA Conetworks Hormones 



This work was supported by the Fundamental Research Funds for the Central Universities (Y0201700179), the Natural science of Jiangsu Province (BK20171374), and the National Natural Science Foundation of China (No. 31330067). We thank Mr. Hua-wei Tan in Nanjing Hua-Seq Biotechnologies Co, Ltd., China for assistance on bioinformatics analysis.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

10725_2018_371_MOESM1_ESM.jpg (389 kb)
Supplementary Fig. 1 The statistical analysis for the composition of raw reads for each sample. The statistical data include the reads containing adapter, “N”, low quality and clean reads (JPG 389 KB)
10725_2018_371_MOESM2_ESM.jpg (788 kb)
Supplementary Fig. 2 The sequencing saturation of each sample in NHCC (JPG 787 KB)
10725_2018_371_MOESM3_ESM.jpg (682 kb)
Supplementary Fig. 3 Exon coverage statistics of each sample (JPG 681 KB)
10725_2018_371_MOESM4_ESM.jpg (297 kb)
Supplementary Fig. 4 Secondary structure of known pre-miRNA (JPG 296 KB)
10725_2018_371_MOESM5_ESM.jpg (763 kb)
Supplementary Fig. 5 The distribution of genes that were mapped to the pathway of plant hormone signal transduction in NHCC (JPG 762 KB)
10725_2018_371_MOESM6_ESM.jpg (29 kb)
Supplementary Fig. 6 Bioinformatics analysis pipeline of LncRNA (JPG 29 KB)
10725_2018_371_MOESM7_ESM.jpg (368 kb)
Supplementary Fig. 7 Expression leves of DEG and DEL under vernalization (JPG 368 KB)
10725_2018_371_MOESM8_ESM.xls (7.4 mb)
Supplementary material 8 (XLS 7610 KB)


  1. Aikawa S, Kobayashi MJ et al (2010) Robust control of the seasonal expression of the Arabidopsis FLC gene in a fluctuating environment. Proc Natl Acad Sci USA 107(25):11632–11637CrossRefPubMedPubMedCentralGoogle Scholar
  2. Angel A, Song J et al (2011) A polycomb-based switch underlying quantitative epigenetic memory. Nature 476(7358):105–108CrossRefPubMedGoogle Scholar
  3. Bastow R, Mylne JS et al (2004) Vernalization requires epigenetic silencing of FLC by histone methylation. Nature 427(6970):164–167CrossRefPubMedGoogle Scholar
  4. Bernier JL, Henichart JP (1981) Extension of the Nenitzescu reaction to a cyclic enamino ketone: one-step synthesis of 6-hydroxy-9H-pyrimido[4,5-b]indole-2,4-dione. J Org Chem 46(21):4197–4198CrossRefGoogle Scholar
  5. Bolger AM, Lohse M et al (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120CrossRefPubMedPubMedCentralGoogle Scholar
  6. Carrieri C, Cimatti L et al (2012) Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature 491(7424):454–457CrossRefPubMedGoogle Scholar
  7. Chouard P (2003) Vernalization and its relations to dormancy. Annu Rev Plant Physiol 11(1):191–238CrossRefGoogle Scholar
  8. De LF, Crevillen P et al (2008) A PHD-polycomb repressive complex 2 triggers the epigenetic silencing of FLC during vernalization. Proc Natl Acad Sci USA 105(44):16831–16836CrossRefGoogle Scholar
  9. Derrien T, Guigó R et al (2011) The long non-coding RNAs: a new (p)layer in the “dark matter”. Front Gene 2:107. Google Scholar
  10. Finnegan EJ, Dennis ES (2007) Vernalization-induced trimethylation of histone H3 lysine 27 at FLC is not maintained in mitotically quiescent cells. Curr Biol 17(22):1978–1983CrossRefPubMedGoogle Scholar
  11. Gendall AR, Levy YY et al (2001) The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis. Cell 107(4):525–535CrossRefPubMedGoogle Scholar
  12. Grabherr MG, Haas BJ et al (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29(7):644–652CrossRefPubMedPubMedCentralGoogle Scholar
  13. Grob S, Schmid MW et al (2013) Characterization of chromosomal architecture in Arabidopsis by chromosome conformation capture. Genome Biol. PubMedPubMedCentralGoogle Scholar
  14. Guil S, Esteller M (2012) Cis-acting noncoding RNAs: friends and foes. Nat Struct Mol Biol 19(11):1068–1075CrossRefPubMedGoogle Scholar
  15. Helliwell C, Wood C, M, et al (2006) The Arabidopsis FLC protein interacts directly in vivo with SOC1 and FT chromatin and is part of a high-molecular-weight protein complex. Plant J 46(2):183–192CrossRefPubMedGoogle Scholar
  16. Henderson IR, Shindo AC et al (2003) The need for winter in the switch to flowering. Annu Rev Genet 37(1):371–392CrossRefPubMedGoogle Scholar
  17. Heo JB, Sung S (2011) Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. Science 331(6013):76–79CrossRefPubMedGoogle Scholar
  18. Kaneko S, Li G et al (2010) Phosphorylation of the PRC2 component Ezh2 is cell cycle-regulated and up-regulates its binding to ncRNA. Genes Dev 24(23):2615–2620CrossRefPubMedPubMedCentralGoogle Scholar
  19. Kaneko S, Bonasio R et al (2013) Interactions between JARID2 and noncoding RNAs regulate PRC2 recruitment to chromatin. Mol Cell 53(2):290–300CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kim SY, Park BS et al (2007) Delayed flowering time in Arabidopsis and Brassica rapa by the overexpression of FLOWERING LOCUS C (FLC) homologs isolated from Chinese cabbage (Brassica rapa L. ssp. pekinensis). Plant Cell Rep 26(3):327–336CrossRefPubMedGoogle Scholar
  21. Koornneef M, Alonsoblanco C et al (2003) Genetic control of flowering time in Arabidopsis. Annu Rev Plant Physiol Plant Mol Biol 49(1):345–370CrossRefGoogle Scholar
  22. Levy YY, Dean C (2002) Multiple roles of Arabidopsis VRN1 in vernalization and flowering time control. Science 297(5579):243–246CrossRefPubMedGoogle Scholar
  23. Li R, Yu C et al (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25(15):1966–1967CrossRefPubMedGoogle Scholar
  24. Lin S, Wang JG et al (2005) Differential regulation of FLOWERING LOCUS C expression by vernalization in cabbage and Arabidopsis. Plant Physiol 137(3):1037–1048CrossRefPubMedPubMedCentralGoogle Scholar
  25. Mercer TR, Mattick JS (2013) Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol 20(3):300–307CrossRefPubMedGoogle Scholar
  26. Michaels SD, Amasino RM (1999) FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11(5):949–956CrossRefPubMedPubMedCentralGoogle Scholar
  27. Michaels SD, Amasino RM (2001) Loss of FLOWERING LOCUS C activity eliminates the late-flowering phenotype of FRIGIDA and autonomous pathway mutations but not responsiveness to vernalization. Plant Cell 13(4):935–941CrossRefPubMedPubMedCentralGoogle Scholar
  28. Michalczuk B, Przybyla A et al (1992) Effect of postharvest chemical treatment on longevity of different cultivars of cut Alstroemeria flowers. Acta Hort (325):199–206Google Scholar
  29. Mortazavi A, Williams BA et al (2008) Mapping and quantifying mammalian transcriptomes by RNA-SEq. Nat Methods 5(7):621–628CrossRefPubMedGoogle Scholar
  30. Mutasagöttgens E, Hedden P (2009) Gibberellin as a factor in floral regulatory networks. J Exp Bot 60(7):1979–1989CrossRefGoogle Scholar
  31. Negishi M, Wongpalee SP et al (2014) A new lncRNA, APTR, associates with and represses the CDKN1A/p21 promoter by recruiting polycomb proteins. PLoS ONE 9(4):e95216. CrossRefPubMedPubMedCentralGoogle Scholar
  32. Oliver SN, Finnegan EJ et al (2009) Vernalization-induced flowering in cereals is associated with changes in histone methylation at the VERNALIZATION 1 gene. Proc Natl Acad Sci USA 106(20):8386–8391CrossRefPubMedPubMedCentralGoogle Scholar
  33. Oono Y, Seki M et al (2006) Monitoring expression profiles of Arabidopsis genes during cold acclimation and deacclimation using DNA microarrays. Funct Integr Genom 6(3):212–234CrossRefGoogle Scholar
  34. Parkhomchuk D, Borodina T et al (2009) Transcriptome analysis by strand-specific sequencing of complementary DNA. Nucleic Acids Res 37(18):e123CrossRefPubMedPubMedCentralGoogle Scholar
  35. Pin PA, Benlloch R et al (2010) An antagonistic pair of FT homologs mediates the control of flowering time in sugar beet. Science 330(6009):1397–1400CrossRefPubMedGoogle Scholar
  36. Rinn JL, Chang HY (2012) Genome regulation by long noncoding RNAs. Annu Rev Biochem 81(1):145CrossRefPubMedGoogle Scholar
  37. Schwabe WW (1987) Hormone involvement in daylength and vernalization control of reproductive development. In: Hoad GV (ed) Hormone action in plant development: acritical appraisal. Elsevier, Amsterdam, pp 217–230CrossRefGoogle Scholar
  38. Searle I, He Y et al (2006) The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes Dev 20(7):898CrossRefPubMedPubMedCentralGoogle Scholar
  39. Sheldon CC, Burn JE et al (1999) The FLF MADS box gene: a repressor of flowering in Arabidopsis regulated by vernalization and methylation. Plant cell 11(3):445–458CrossRefPubMedPubMedCentralGoogle Scholar
  40. Song X, Liu G et al (2014) Genome-wide identification, classification and expression analysis of the heat shock transcription factor family in Chinese cabbage. Mol Genet Genom 289(4):541–551CrossRefGoogle Scholar
  41. Suge H (1977) Changes in ethylene production of vernalized plants. Plant Cell Physiol 18(5):1167–1171Google Scholar
  42. Sung S, Amasino RM (2004) Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3. Nature 427(6970):159–164CrossRefPubMedGoogle Scholar
  43. Sung S, He Y et al (2006) Epigenetic maintenance of the vernalized state in Arabidopsis thaliana requires LIKE HETEROCHROMATIN PROTEIN 1. Nat Genet 38(6):706–710CrossRefPubMedGoogle Scholar
  44. Tadege M, Sheldon CC et al (2002) Control of flowering time by FLC orthologues in Brassica napus. Plant J 28(5):545–553CrossRefGoogle Scholar
  45. Vance KW, Ponting CP (2014) Transcriptional regulatory functions of nuclear long noncoding RNAs. Trends Genet 30(8):348CrossRefPubMedPubMedCentralGoogle Scholar
  46. Wang R, Farrona S et al (2009) PEP1 regulates perennial flowering in Arabis alpina. Nature 459(7245):423–427CrossRefPubMedGoogle Scholar
  47. Wang W, Peng W et al (2016) Genome-wide analysis and expression patterns of ZF-HD transcription factors under different developmental tissues and abiotic stresses in Chinese cabbage. Mol Genet Genom 291(3):1451–1464CrossRefGoogle Scholar
  48. Wood CC, Robertson M et al (2006) The Arabidopsis thaliana vernalization response requires a polycomb-like protein complex that also includes vernalization insensitive 3. Proc Natl Acad Sci USA 103(39):14631–14636CrossRefPubMedPubMedCentralGoogle Scholar
  49. Yang TJ, Kim JS et al (2006) Sequence-level analysis of the diploidization process in the triplicated FLOWERING LOCUS C region of Brassica rapa. Plant Cell 18(6):1339CrossRefPubMedPubMedCentralGoogle Scholar
  50. Yang L, Duff MO et al (2011) Genome wide characterization of non-polyadenylated RNAs. Genome Biol 12(2):R16CrossRefPubMedPubMedCentralGoogle Scholar
  51. Zhao J, Sun BK et al (2008) Polycomb proteins targeted by a short repeat RNA to the mouse × chromosome. Science 322(5902):750CrossRefPubMedPubMedCentralGoogle Scholar
  52. Zhao J, Ohsumi TK et al (2010) Genome-wide Identification of Polycomb-Associated RNAs by RIP-sEq. Mol Cell 40(6):939–953CrossRefPubMedPubMedCentralGoogle Scholar
  53. Zheng BB, Wu XM et al (2012) Comparative transcript profiling of a male sterile cybrid pummelo and its fertile type revealed altered gene expression related to flower development. PLoS ONE 7(8):e43758CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Tongkun Liu
    • 1
  • Peng Wu
    • 1
  • Qian Wang
    • 2
  • Wenli Wang
    • 1
  • Changwei Zhang
    • 1
  • Feifei Sun
    • 3
  • Zhaokun Liu
    • 4
  • Ying Li
    • 1
  • Xilin Hou
    • 1
  1. 1.Department of HorticultureNanjing Agricultural UniversityNanjingChina
  2. 2.Jinling Institute of TechnologyNanjingChina
  3. 3.Nanjing Institute of Vegetable ScienceNanjingChina
  4. 4.Suzhou Institute of VegetableNanjingChina

Personalised recommendations