Skip to main content
Log in

Spatial and temporal expression of cytosine-5 DNA methyltransferase and DNA demethylase gene families of the Ricinus communis during seed development and drought stress

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

A Correction to this article was published on 17 August 2020

This article has been updated

Abstract

Cytosine methylation plays a key role in genome stability and gene expression regulation. The dynamic and reversible nature of cytosine methylation is orchestrated by the coordinated and opposing action of two different gene families: the cytosine-5 DNA methyltransferases (C5-MTases) and the DNA demethylases. Here, we identified and characterized eight C5-MTases and three DNA demethylase family members in Ricinus communis (castor plant), an oilseed species of the Euphorbiaceae family. Bioinformatic analysis of the protein primary structure revealed the presence of conserved functional domains defining each family. The amino acid identities between C5-MTases and DNA demethylases from castor plant and their protein homologues from Jatropha curcas and Manihot esculenta, were 65 and 85%, respectively. Intriguingly, protein localization predictions suggested multiple targeting to nucleus, mitochondria and chloroplasts for some methyltransferases. Tissue and developmental gene expression analysis, with emphasis in seed maturation stages, showed that all family members varied widely in their expression across tissues suggesting distinct biological roles. In silico promoter analysis revealed several cis acting elements associated with drought responses indicating an epigenetic mechanism of regulation for the drought response by means of a methylation/demethylation switch. Consequent quantitative PCR analysis revealed that although C5-MTase genes were differentially expressed under drought stress, all the demethylase genes analyzed in this study (RcDME, RcDML-3 and RcROS1) were significantly upregulated suggesting fine-tuning of DNA methylation and demethylation events. The detection and organization of putative transposable elements (ΤΕs) along promoter regions of most of the genes indicates a possible role in transcriptional control. The current results set the foundation for functional studies of the C5-MTase and DNA demethylase gene families in castor plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

  • 17 August 2020

    In the original publication of this article, the complete author names were incorrect. The correct names are provided in this correction.

References

  • Ahmad F, Huang X, Lan HX, Huma T, Bao YM, Huang J, Zhang HS (2014) Comprehensive gene expression analysis of the DNA (cytosine-5) methyltransferase family in rice (Oryza sativa L.). Genet Mol Res 13(3):5159–5172

    Article  CAS  PubMed  Google Scholar 

  • Allan G, Williams A, Rabinowicz PD, Chan AP, Ravel J, Keim P (2008) Worldwide genotyping of castor bean germplasm (Ricinus communis L.) using AFLPs and SSRs. Genet Resour Crop Evol 55(3):365–378

    Article  CAS  Google Scholar 

  • Baldoni AB, Araújo ACG, de Carvalho MH, Gomes ACMM, Aragao FJL (2010) Immunolocalization of ricin accumulation during castor bean (Ricinus communis L.) seed development. Int J Plant Biol 1(2):12

    Article  Google Scholar 

  • Bennetzen JL, Wang H (2014) The contributions of transposable elements to the structure, function, and evolution of plant genomes. Annu Rev Plant Biol 65:505–530

    Article  CAS  PubMed  Google Scholar 

  • Cao X, Springer NM, Muszynski MG, Phillips RL, Kaeppler S, Jacobsen SE (2000) Conserved plant genes with similarity to mammalian de novo DNA methyltransferases. Proc Natl Acad Sci 97(9):4979–4984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao D, Ju Z, Gao C, Mei X, Fu D, Zhu H, Luo Y, Zhu B (2014) Genome-wide identification of cytosine-5 DNA methyltransferases and demethylases in Solanum lycopersicum. Gene 550(2):230–237

    Article  CAS  PubMed  Google Scholar 

  • Chan SWL, Henderson IR, Jacobsen SE (2005) Gardening the genome: DNA methylation in Arabidopsis thaliana. Nat Rev Genet 6(5):351–360

    Article  CAS  PubMed  Google Scholar 

  • Chan AP, Crabtree J, Zhao Q, Lorenzi H, Orvis J, Puiu D, Melake-Berhan A, Jones KM, Redman J, Chen G (2010) Draft genome sequence of the oilseed species Ricinus communis. Nature Biotechnol 28(9):951–956

    Article  CAS  Google Scholar 

  • Choi Y, Gehring M, Johnson L, Hannon M, Harada JJ, Goldberg RB, Jacobsen SE, Fischer RL (2002) DEMETER, a DNA glycosylase domain protein, is required for endosperm gene imprinting and seed viability in Arabidopsis. Cell 110(1):33–42

    Article  CAS  PubMed  Google Scholar 

  • Cokus SJ, Feng S, Zhang X, Chen Z, Merriman B, Haudenschild CD, Pradhan S, Nelson SF, Pellegrini M, Jacobsen SE (2008) Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452(7184):215–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diez CM, Roessler K, Gaut BS (2014) Epigenetics and plant genome evolution. Curr Opin Pl Biol 18:1–8

    Article  CAS  Google Scholar 

  • Du J, Zhong X, Bernatavichute YV, Stroud H, Feng S, Caro E, Vashisht AA, Terragni J, Chin HG, Tu A (2012) Dual binding of chromomethylase domains to H3K9me2-containing nucleosomes directs DNA methylation in plants. Cell 151(1):167–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eichten SR, Ellis NA, Makarevitch I, Yeh C-T, Gent JI, Guo L, McGinnis KM, Zhang X, Schnable PS, Vaughn MW (2012) Spreading of heterochromatin is limited to specific families of maize retrotransposons. PLoS Genet 8(12):e1003127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foster JT, Allan GJ, Chan AP, Rabinowicz PD, Ravel J, Jackson PJ, Keim P (2010) Single nucleotide polymorphisms for assessing genetic diversity in castor bean (Ricinus communis). BMC Plant Biol 10(1):1

    Article  Google Scholar 

  • Garg R, Kumari R, Tiwari S, Goyal S (2014) Genomic survey, gene expression analysis and structural modeling suggest diverse roles of DNA methyltransferases in legumes. PloS ONE 9(2):e88947

    Article  PubMed  PubMed Central  Google Scholar 

  • Gehring M, Huh JH, Hsieh T-F, Penterman J, Choi Y, Harada JJ, Goldberg RB, Fischer RL (2006) DEMETER DNA glycosylase establishes MEDEA polycomb gene self-imprinting by allele-specific demethylation. Cell 124(3):495–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gehring M, Bubb KL, Henikoff S (2009) Extensive demethylation of repetitive elements during seed development underlies gene imprinting. Science 324(5933):1447–1451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong Z, Morales-Ruiz T, Ariza RR, Roldán-Arjona T, David L, Zhu J-K (2002) ROS1, a repressor of transcriptional gene silencing in Arabidopsis, encodes a DNA glycosylase/lyase. Cell 111(6):803–814

    Article  CAS  PubMed  Google Scholar 

  • Greenwood J, Bewley J (1982) Seed development in Ricinus communis (castor bean). I. Descriptive morphology. Can J Bot 60(9):1751–1760

    Article  Google Scholar 

  • He S, Xu W, Li F, Wang Y, Liu A (2017) Intraspecific DNA methylation polymorphism in the non-edible oilseed plant castor bean. Plant Diversity (In Press)

  • Hollister JD, Gaut BS (2009) Epigenetic silencing of transposable elements: a trade-off between reduced transposition and deleterious effects on neighboring gene expression. Genome Res 19(8):1419–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iyer LM, Zhang D, Rogozin IB, Aravind L (2011) Evolution of the deaminase fold and multiple origins of eukaryotic editing and mutagenic nucleic acid deaminases from bacterial toxin systems. Nucleic Acids Res 39(22):9473–9497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapazoglou A, Engineer C, Drosou V, Kalloniati C, Tani E, Tsaballa A, Kouri ED, Ganopoulos I, Flemetakis E, Tsaftaris AS (2012) The study of two barley type I-like MADS-box genes as potential targets of epigenetic regulation during seed development. BMC Plant Biol 12(1):1

    Article  Google Scholar 

  • Kapazoglou A, Drosou V, Argiriou A, Tsaftaris AS (2013a) The study of a barley epigenetic regulator, HvDME, in seed development and under drought. BMC Plant Biol 13(1):172

    Article  PubMed  PubMed Central  Google Scholar 

  • Kapazoglou A, Drosou V, Nitsos C, Bossis I, Tsaftaris A, Triantafyllidis K, Hilioti Z (2013b) Biofuels get in the fast lane: developments in plant feedstock production and processing. Adv Crop Sci Tech 1(4):117–132 b)

    Google Scholar 

  • Kinoshita T, Miura A, Choi Y, Kinoshita Y, Cao X, Jacobsen SE, Fischer RL, Kakutani T (2004) One-way control of FWA imprinting in Arabidopsis endosperm by DNA methylation. Science 303(5657):521–523

    Article  CAS  PubMed  Google Scholar 

  • Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11(3):204–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le T-N, Schumann U, Smith NA, Tiwari S, Au PCK, Zhu Q-H, Taylor JM, Kazan K, Llewellyn DJ, Zhang R (2014) DNA demethylases target promoter transposable elements to positively regulate stress responsive genes in Arabidopsis. Genome Biol 15(9):1

    Article  Google Scholar 

  • Lindroth AM, Cao X, Jackson JP, Zilberman D, McCallum CM, Henikoff S, Jacobsen SE (2001) Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation. Science 292(5524):2077–2080

    Article  CAS  PubMed  Google Scholar 

  • Lisch D (2013) How important are transposons for plant evolution? Nat Rev Genet 14(1):49–61

    Article  CAS  PubMed  Google Scholar 

  • Liu R, How-Kit A, Stammitti L, Teyssier E, Rolin D, Mortain-Bertrand A, Halle S, Liu M, Kong J, Wu C (2015) A DEMETER-like DNA demethylase governs tomato fruit ripening. Proc Natl Acad Sci 112(34):10804–10809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malik G, Dangwal M, Kapoor S, Kapoor M (2012) Role of DNA methylation in growth and differentiation in Physcomitrella patens and characterization of cytosine DNA methyltransferases. The FEBS J 279(21):4081–4094

    Article  CAS  PubMed  Google Scholar 

  • Matzke MA, Mosher RA (2014) RNA-directed DNA methylation: an epigenetic pathway of increasing complexity (vol 15, 394, 2014). Nat Rev Genet 15 (8)

  • Merkouropoulos G, Kapazoglou A, Drosou V, Jacobs E, Krolzig A, Papadopoulos C, Hilioti Z (2016) Dwarf hybrids of the bioenergy crop Ricinus communis suitable for mechanized harvesting reveal differences in morpho-physiological characteristics and seed metabolic profiles. Euphytica 210(2):207–219

    Article  CAS  Google Scholar 

  • Morales-Ruiz T, Ortega-Galisteo AP, Ponferrada-Marin MI, Martinez-Macias MI, Ariza RR, Roldan-Arjona T (2006) DEMETER and REPRESSOR OF SILENCING 1 encode 5-methylcytosine DNA glycosylases. Proc Natl Acad Sci 103(18):6853–6858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mueller TD, Feigon J (2002) Solution structures of UBA domains reveal a conserved hydrophobic surface for protein-protein interactions. J Mol Biol 319(5):1243–1255

    Article  CAS  PubMed  Google Scholar 

  • Ortega-Galisteo AP, Morales-Ruiz T, Ariza RR, Roldán-Arjona T (2008) Arabidopsis DEMETER-LIKE proteins DML2 and DML3 are required for appropriate distribution of DNA methylation marks. Plant Mol Biol 67(6):671–681

    Article  CAS  PubMed  Google Scholar 

  • Pavlopoulou A, Kossida S (2007) Plant cytosine-5 DNA methyltransferases: structure, function, and molecular evolution. Genomics 90(4):530–541

    Article  CAS  PubMed  Google Scholar 

  • Penterman J, Uzawa R, Fischer RL (2007) Genetic interactions between DNA demethylation and methylation in Arabidopsis. Plant Physiol 145(4):1549–1557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (RESTΒ©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30(9):e36-e36

    Article  Google Scholar 

  • Qian Y, Xi Y, Cheng B, Zhu S (2014) Genome-wide identification and expression profiling of DNA methyltransferase gene family in maize. Plant Cell Rep 33(10):1661–1672

    Article  CAS  PubMed  Google Scholar 

  • Sanchez DH, Paszkowski J (2014) Heat-induced release of epigenetic silencing reveals the concealed role of an imprinted plant gene. PLoS Genet 10(11):e1004806

    Article  PubMed  PubMed Central  Google Scholar 

  • Schoft VK, Chumak N, Choi Y, Hannon M, Garcia-Aguilar M, Machlicova A, Slusarz L, Mosiolek M, Park J-S, Park GT, Fischer RL, Tamaru H (2011) Function of the DEMETER DNA glycosylase in the Arabidopsis thaliana male gametophyte. Proc Natl Acad Sci 108(19):8042–8047. doi:10.1073/pnas.1105117108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Severino LS, Auld DL, Baldanzi M, Cândido MJD, Chen G, Crosby W, Tan D, He X, Lakshmamma P, Lavanya C (2012) A review on the challenges for increased production of castor. Agron J 104(4):853–880

    Article  Google Scholar 

  • Sharma R, Mohan Singh RK, Malik G, Deveshwar P, Tyagi AK, Kapoor S, Kapoor M (2009) Rice cytosine DNA methyltransferases-gene expression profiling during reproductive development and abiotic stress. FEBS J 276(21):6301–6311

    Article  CAS  PubMed  Google Scholar 

  • Stroud H, Do T, Du J, Zhong X, Feng S, Johnson L, Patel DJ, Jacobsen SE (2014) Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis. Nature Struct Mol Biol 21(1):64–72

    Article  CAS  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsaftaris AS, Kapazoglou A, Darzentas N (2012) Epigenetics, epigenomics, and implications in plant breeding. Plant Biotechnology and Agriculture: Prospects for the 21st Century. Academic press, Cambridge, pp 207–226

    Chapter  Google Scholar 

  • Uthup TK, Ravindran M, Bini K, Thakurdas S (2011) Divergent DNA methylation patterns associated with abiotic stress in Hevea brasiliensis. Mol Plant 4(6):996–1013

    Article  CAS  PubMed  Google Scholar 

  • Wen S, Wen N, Pang J, Langen G, Brew-Appiah RAT, Mejias JH, Osorio C, Yang M, Gemini R, Moehs CP, Zemetra RS, Kogel K-H, Liu B, Wang X, von Wettstein D, Rustgi S (2012) Structural genes of wheat and barley 5-methylcytosine DNA glycosylases and their potential applications for human health. Proc Natl Acad Sci 109:20543–20548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia Z, Zou M, Zhang S, Feng B, Wang W (2014) AFSM sequencing approach: a simple and rapid method for genome-wide SNP and methylation site discovery and genetic mapping. Sci Rep 4

  • Yamamuro C, Miki D, Zheng Z, Ma J, Wang J, Yang Z, Dong J, Zhu J-K (2014) Overproduction of stomatal lineage cells in Arabidopsis mutants defective in active DNA demethylation. Nat Commun 5(5):4062

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yi C, Zhang S, Liu X, Bui HTN, Hong Y (2010) Does epigenetic polymorphism contribute to phenotypic variances in Jatropha curcas L.? BMC Plant Biol 10(1):1

    Article  Google Scholar 

  • Zhang M, Kimatu JN, Xu K, Liu B (2010) DNA cytosine methylation in plant development. J Genet Genomics 37(1):1–12

    Article  PubMed  Google Scholar 

  • Zheng X, Pontes O, Zhu J, Miki D, Zhang F, Li W-X, Iida K, Kapoor A, Pikaard CS, Zhu J-K (2008) ROS3 is an RNA-binding protein required for DNA demethylation in Arabidopsis. Nature 455(7217):1259–1262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support of the JONAH-FUEL by Greece and the European Regional Development Fund within the program ‘Bilateral R&D cooperation between Greece and Israel 2013–2015’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hilioti Zoe.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 515 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Victoria, D., Aliki, K., Venetia, K. et al. Spatial and temporal expression of cytosine-5 DNA methyltransferase and DNA demethylase gene families of the Ricinus communis during seed development and drought stress. Plant Growth Regul 84, 81–94 (2018). https://doi.org/10.1007/s10725-017-0323-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-017-0323-y

Keywords

Navigation