Skip to main content
Log in

Noncoding and coding transcriptome analysis reveals the regulation roles of long noncoding RNAs in fruit development of hot pepper (Capsicum annuum L.)

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Long non-coding RNAs (lncRNAs) have been shown to play critical regulatory roles in diverse biological processes in plants. However, the presence of lncRNAs and their potential functions in hot pepper are still unknown. Using strand-specific RNA-sequencing, a total of 2505 putative lncRNAs were identified in the fruits of hot pepper. The lncRNAs were transcribed from all pepper chromosomes and 95.37% of them originated from intergenic regions. And 1066 lncRNAs were differentially expressed among the four samples during pepper fruit development. Many potential protein-coding (PC) genes targeted by lncRNAs with cis or trans-acting were also identified. Six of them and their target genes were further validated by quantitative RT-PCR. Some of these target genes were involved in plant hormone signal transduction, cell wall formation and carotenoid biosynthesis, indicating the roles of lncRNAs in the regulation of fruit development and quality. This study identified a large number of lncRNAs in hot pepper, thereby providing some insights into the fruit development of hot pepper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abraham-Juárez MD, Rocha-Granados MD, López MG, Rivera-Bustamante RF, Ochoa-Alejo N (2008) Virus-induced silencing of Comt, pAmt and Kas genes results in a reduction of capsaicinoid accumulation in chili pepper fruits. Planta 227:681–695

    Article  Google Scholar 

  • Adams-Phillips L, Barry C, Giovannoni J (2004) Signal transduction systems regulating fruit ripening. Trends Plant Sci 9:331–338

    Article  CAS  PubMed  Google Scholar 

  • Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11(10):R106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ariel F, Romero-Barrios N, Jégu T, Benhamed M, Crespi M (2015) Battles and hijacks: noncoding transcription in plants. Trends Plant Sci 20(6):362–371

    Article  CAS  PubMed  Google Scholar 

  • Aza-González C, Núñez-Palenius HG, Ochoa-Alejo N (2011) Molecular biology of capsaicinoid biosynthesis in chili pepper (Capsicum spp.). Plant Cell Rep 30:695–706

    Article  PubMed  Google Scholar 

  • Bentolila S, Alfonso AA, Hanson MR (2002) A pentatricopeptide repeat-containing gene restores fertility to cytoplasmic male-sterile plants. Proc Natl Acad Sci USA 99:10887–10892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonnet E, Van de Peer Y, Rouze P (2006) The small RNA world of plants. New Phytol 171:451–468

    Article  CAS  PubMed  Google Scholar 

  • Brown GG, Formanova N, Jin H, Wargachuk R, Dendy C, Patil P, Laforest M, Zhang J, Cheung WY, Landry BS (2003) The radish Rfo restorer gene of Ogura cytoplasmic male sterility encodes a protein with multiple pentatricopeptide repeats. Plant J 35:262–272

    Article  CAS  PubMed  Google Scholar 

  • Charoenchongsuka N, Ikedaa K, Itaib A, Oikawaa A, Murayamaa H (2015) Comparison of the expression of chlorophyll-degradation-related genes during ripening between stay-green and yellow-pear cultivars. Sci Hortic 181:89–94

    Article  Google Scholar 

  • Chekanova JA (2015) Long non-coding RNAs and their functions in plants. Curr Opin Plant Biol 27:207–216

    Article  CAS  PubMed  Google Scholar 

  • Chen XM (2012) Small RNAs in development: insights from plants. Curr Opin Genet Dev 22:361–367

    Article  PubMed  PubMed Central  Google Scholar 

  • Chung MY, Vrebalov J, Alba R, Lee J, McQuinn R, Chung JD, Kiein P, Giovannoi J (2010) A tomato (Solanum lycopersicum) APETALA2/ERF gene, SlAP2a, is a negative regulator of fruit ripening. Plant J 64:936–947

    Article  CAS  PubMed  Google Scholar 

  • Cruz de Carvalho CMH, Sun HX, Bowler C, Chua NH (2016) Noncoding and coding transcriptome responses of a marine diatom to phosphate fluctuations. New Phytol 210(2):497–510

    Article  CAS  PubMed  Google Scholar 

  • Cuperus JT, Fahlgren N, Carrington JC (2011) Evolution and functional diversification of MIRNA genes. Plant Cell 23:431–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai X, Zhao PX (2011) psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res 39(suppl 2):W155–W159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di C, Yuan JP, Wu Y, Li JR, Lin HX, Hu L, Zhang T, Qi YJ, Gerstein MB, Guo Y, Lu Z (2014) Characterization of stress-responsive lncRNAs in Arabidopsis thaliana by integrating expression, epigenetic and structural features. Plant J 80:848–861

    Article  CAS  PubMed  Google Scholar 

  • Du Z, Zhou X, Ling Y, Zhang Z, Su Z (2010) agriGO: a GO analysis toolkit for the agriculture community. Nucleic Acids Res 38:W64–W70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du L, Yang X, Song J, Ma ZZ, Zhang ZQ, Pang XQ (2014) Characterization of the stage dependency of high temperature on green ripening reveals a distinct chlorophyll degradation regulation in banana fruit. Sci Hortic 180:139–146

    Article  CAS  Google Scholar 

  • Franco-Zorrilla JM, Valli A, Todesco M, Mateos I, Puga MI, Rubio-Somoza I, Leyva A, Weigel D, Garcia JA, Paz-Ares J (2007) Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet 39:1033–1037

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Gao S, Xiong C, Yu G, Chang J, Ye ZB, Yang CX (2015) Comprehensive analysis and expression profile of the homeodomain leucine zipper IV transcription factor family in tomato. Plant Physiol Biochem 96:141–153

    Article  CAS  PubMed  Google Scholar 

  • Giovannoni JJ (2001) Molecular biology of fruit maturation and ripening. Annu Rev Plant Physiol Plant Mol Biol 52:725–749

    Article  CAS  PubMed  Google Scholar 

  • Govindarajan VS (1985) Capsicum production, technology, chemistry and quality part I history, botany, cultivation and primary processing. CRC Critical Rev Food Sci 22:109–175

    Article  CAS  Google Scholar 

  • Hall LN, Tucker GA, Smith CJS, Watson CF, Seymour GB, Bundick Y, Boniwell JM, Fletcher JD, Ray JA, Schuch W, Bird CR, Grierson D (1993) Antisense inhibition of pectin esterase gene expression in transgenic tomatoes. Plant J 3:121–129

    Article  CAS  Google Scholar 

  • Hu J, Jin J, Qian Q, Huang K, Ding Y (2016) Small RNA and degradome profiling reveals miRNA regulation in the seed germination of ancient eudicot Nelumbo nucifera. BMC Genomics 17:684

    Article  PubMed  PubMed Central  Google Scholar 

  • Hwang DG, Park JH, Lim JY, Kim D, Choi Y, Kim S, Reeves G, Yeom SI, Lee JS, Park M, Kim S, Choi IY, Choi D, Shin C (2013) The hot pepper (Capsicum annuum) microRNA transcriptome reveals novel and conserved targets: a foundation for understanding microRNA functional roles in hot pepper. PLoS ONE 8(5):e64238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia H, Osak M, Bogu GK, Stanton LW, Johnson R, Lipovich L (2010) Genome-wide computational identification and manual annotation of human long noncoding RNA genes. RNA 16:1478–1487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27e30

    Article  Google Scholar 

  • Kang CY, Liu ZC (2015) Global identification and analysis of long non-coding RNAs in diploid strawberry Fragaria vesca during flower and fruit development. BMC Genomics 16:815

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim ED, Sung S (2012) Long noncoding RNA: unveiling hidden layer of gene regulatory networks. Trends Plant Sci 17:16–21

    Article  CAS  PubMed  Google Scholar 

  • Kong L, Zhang Y, Ye ZQ, Liu XQ, Zhao SQ, Wei L, Gao G (2007) CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res 35:W345–W349

    Article  PubMed  PubMed Central  Google Scholar 

  • Lasda E, Parker R (2014) Circular RNAs: diversity of form and function. RNA 20:1829–1842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J, Yoon JB, Park HG (2008) A CAPS marker associated with the partial restoration of cytoplasmic male sterility in chili pepper (Capsicum annuum L.). Mol Breed 21:95–104

    Article  CAS  Google Scholar 

  • Li ZG, Yao LH, Yang YW, Li AD (2006) Transgenic approach to improve quality traits of melon fruit. Sci Hortic 108:268–277

    Article  CAS  Google Scholar 

  • Li XY, Bian HW, Song DF, Ma SY, Han N, Wang JH, Zhu MY (2013) Flowering time control in ornamental gloxinia (Sinningia speciosa) by manipulation of miR159 expression. Ann Bot 111(5):791–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Eichten SR, Shimizu R, Petsch K, Yeh CT, Wu W, Chettoor AM, Givan SA, Cole RA, Fowler JE, Evans MM, Scanlon MJ, Yu J, Schnable PS, Timmermans MC, Springer NM, Muehlbauer GJ (2014) Genome-wide discovery and characterization of maize long non-coding RNAs. Genome Biol 15:R40

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu J, Jung C, Xu J, Wang H, Deng S, Bernad L, Arenas-Huertero C, Chua NH (2012) Genome-wide analysis uncovers regulation of long intergenic noncoding RNAs in Arabidopsis. Plant Cell 24:4333–4345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S, Li W, Wu Y, Chen C, Lei J (2013) De novo transcriptome assembly in chili pepper (Capsicum frutescens) to identify genes involved in the biosynthesis of capsaicinoids. PLoS ONE 8:e48156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu ZB, Zhang YP, Ou LJ, Kang LY, Liu YH, Lv JH, Wei G, Yang BZ, Yang S, Chen WC, Dai XZ, Li XF, Zhou SD, Zhang ZQ, Ma YQ, Zou XX (2017) Identification and characterization of novel microRNAs for fruit development and quality in hot pepper (Capsium annuum L.). Gene 608:66–72

    Article  CAS  PubMed  Google Scholar 

  • McCollum TG, Huber DJ, Cantliffe DJ (1989) Modification of polyuronides and hemicelluloses during muskmelon fruit softening. Physiol Plant 76:303–308

    Article  CAS  Google Scholar 

  • Nashilevitz S, Melamed-Bessudo C, Izkovich Y, Rogachev I, Osorio S, Itkin M, Adato A, Pankratov I, Hirchberg J, Fernie AR, Wolf S, Usadel B, Levy AA, Rumeau D, Aharoni A (2010) An orange ripening mutant links plastid NAD (P)H dehydrogenase complex activity to central and specialized metabolism during tomato fruit maturation. Plant Cell 22:1977–1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navarro JM, Flores P, Garrido C, Martinez V (2006) Changes in the contents of antioxidant compounds in pepper fruits at different ripening stages, as affected by salinity. Food Chem 96(1):66–73

    Article  CAS  Google Scholar 

  • Ong WD, Voo LYC, Kumar VS (2012) De novo assembly, characterization and functional annotation of pineapple fruit transcriptome through massively parallel sequencing. PLoS ONE 7(10):e46937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pant BD, Buhtz A, Kehr J, Scheible W (2008) MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis. Plant J 53(5):731–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perla V, Nimmakayala P, Nadimi M, Alaparthi SB, Hankins G, Ebert AW, Reddy UK (2016) Vitamin C and reducing sugars in the world collection of Capsicum baccatum L. genotypes. Food Chem 202:189–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin C, Yu CS, Shen Y, Fang XD, Chen L, Min JM, Cheng JW, Zhao SC, Xu M, Luo Y et al (2014) Whole-genome sequencing of cultivated and wild peppers provides insights into Capsium domestication and specialization. Proc Natl Acad Sci USA 14(111):5135–5140

    Article  Google Scholar 

  • Ramachandran V, Chen X (2008) Degradation of microRNAs by a family of exoribonucleases in Arabidopsis. Science 321:1490–1492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raman S, Greb T, Peaucelle A, Blein T, Laufs P, Theres K (2008) Interplay of miR164, CUP-SHAPED COTYLEDON genes and LATERAL SUPPRESSOR controls axillary meristem formation in Arabidopsis thaliana. Plant J 55(1):65–76

    Article  CAS  PubMed  Google Scholar 

  • Rinn JL, Chang HY (2012) Genome regulation by long noncoding RNAs. Ann Rev Biochem 81:145–166

    Article  CAS  PubMed  Google Scholar 

  • Rogers K, Chen XM (2013) Biogenesis, turnover, and mode of action of plant microRNAs. Plant Cell 25:2383–2399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosianskey Y, Dahan Y, Yadav S, Freiman ZE, Milo-Cochavi S, Kerem Z, Eyal Y, Flaishman MA (2016) Chlorophyll metabolism in pollinated vs parthenocarpic fig fruits throughout development and ripening. Planta 244(2):491–504

    Article  CAS  PubMed  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3(6):1101–1108

    Article  CAS  PubMed  Google Scholar 

  • Shan W, Kuang J, Chen L, Xie H, Peng HH, Xiao YY, Li XP, Chen WX, He QG, Chen JY, Lu WJ (2012) Molecular characterization of banana NAC transcription factors and their interactions with ethylene signalling component EIL during fruit ripening. J Exp Bot 63(14):5171–5187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shuai P, Liang D, Tang S, Zhang ZJ, Ye CY, Su YY, Xia XL, Yin WL (2014) Genome-wide identification and functional prediction of novel and drought-responsive lincRNAs in Populus trichocarpa. J Exp Bot 65:4975–4983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spadoni A, Guidarelli M, Phillips J, Mari M, Wisniewshi M (2015) Transcriptional profiling of apple fruit in response to heat treatment: involvement of a defense response during Penicillium expansum infection. Postharvest Bio Tech 101, 37–48

    Article  CAS  Google Scholar 

  • Sun Q, Csorba T, Skourti-Stathaki K, Proudfoot NJ, Dean C (2013a) R-loop stabilization represses antisense transcription at the Arabidopsis FLC locus. Science 340:619–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun L, Luo H, Bu D, Zhao G, Yu K, Zhang C, Liu Y, Chen R, Zhao Y (2013b) Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts. Nucleic Acids Res 41:e166

  • Swiezewski S, Liu F, Magusin A, Dean C (2009) Cold-induced silencing by long antisense transcripts of an Arabidopsis Polycomb target. Nature 462:799–802

    Article  CAS  PubMed  Google Scholar 

  • Tafer H, Hofacker IL (2008) RNAplex: a fast tool for RNA-RNA interaction search. Bioinformatics 24:2657–2663

    Article  CAS  PubMed  Google Scholar 

  • Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg S, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2012) Differential gene and transcript expression analysis of RNA-Seq experiments with TopHat and Cufflinks. Nat Protoc 7:562–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trapnell C, Hendridchson DG, Sauvageau M, Goff L, Rinn JL, Pachter L (2013) Differential analysis of gene regulation at transcript resolution with RNA-sEq. Nat Biotechnol 31:46–53

    Article  CAS  PubMed  Google Scholar 

  • Tsaballa A, Pasentsis K, Darzentas N, Tsaftaris AS (2011) Multiple evidence for the role of an ovate-like gene in determining fruit shape in pepper. BMC Plant Biol 11:46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ulitsky I, Bartel DP (2013) lincRNAs: genomics, evolution, and mechanisms. Cell 154:26–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang ZW, Wu Z, Raitskin O, Sun Q, Dean C (2014) Antisense-mediated FLC transcriptional repression requires the P-TEFb transcription elongation factor. Proc Natl Acad Sci USA 111:7468–7473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang MJ, Yuan DJ, Tu LL, Gao WH, He YH, Hu HY, Wang PC, Liu N, Lindsey K, Zhang XL (2015) Long noncoding RNAs and their proposed functions in fibre development of cotton (Gossypium spp). New Phytol 207:1181–1197

    Article  CAS  PubMed  Google Scholar 

  • Wu HJ, Ma YK, Chen T, Wang M, Wang XJ (2012) PsRobot: a Web-based plant small RNA meta-analysis toolbox. Nucleic Acids Res 40:W22–W28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu HJ, Wang ZM, Wang M, Wang XJ (2013) Widespread long noncoding RNAs as endogenous target mimics for microRNAs in plants. Plant Physiol 161:1875–1884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie C, Mao X, Huang J, Ding Y, Wu J, Dong S, Kong L, Gao G, Li C, Wei L (2011) KOBAS 20: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res 39:W316–W322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Chen X, Wang C, Xu Z, Wang YJ, Liu XL, Kang ZS, Ji WQ (2013) Long non-coding genes implicated in response to stripe rust pathogen stress in wheat (Triticum aestivum L.). Mol Biol Rep 40(11):6245–6253

    Article  CAS  PubMed  Google Scholar 

  • Zhang YC, Liao JY, Li ZY, Yu Y, Zhang JP, Li QF, Qu LH, Shu WS, Chen YQ (2014) Genome-wide screening and functional analysis identify a large number of long noncoding RNAs involved in the sexual reproduction of rice. Genome Biol 15:512

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu M, Chen G, Zhou S, Tu Y, Wang Y, Dong TT, Hu ZL (2014) A new tomato NAC (NAM/ATAF1/2/CUC2) transcription factor, SlNAC4, functions as a positive regulator of fruit ripening and carotenoid accumulation. Plant Cell Physiol 55(1):119–135

    Article  CAS  PubMed  Google Scholar 

  • Zhu BZ, Yang YF, Li R, Fu DQ, Wen LW, Luo YB, Zhu HL (2015) RNA sequencing and functional analysis implicate the regulatory role of long non-coding RNAs in tomato fruit ripening. J Exp Bot 66:4483–4495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research is financially supported by China Agriculture Research System (CARS-25-A-8).

Author Contributions

XZ, YM and LO conceived and designed the experiments. LO, ZL, ZZ, GW, YZ, LK and BY performed the experiments. SY, JL, YL, WC, XD, XL, and SZ analyzed the data. XZ, YM supervised the progress of the project. LO and ZL wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanqing Ma or Xuexiao Zou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10725_2017_290_MOESM1_ESM.tiff

Fig. S1 Expression levels as determined by RNA-seq and qRT-PCR are highly correlated. The log2 of the values in the RNA-seq and the qRT-PCR data were plotted along with the linear fit line to examine the correlation relationship between the two methods (R2=0.773, p<0.001) (TIFF 237 KB)

10725_2017_290_MOESM2_ESM.tiff

Fig. S2 Venn diagrams showing the number of differentially expressed (DE) lncRNAs among the four samples. (A, B, C) Venn diagram showing the overlap of DE lncRNAs between adjacent stages (A1 vs A2, A2 vs A3 and A1vs A3). (D) Venn diagram showing the overlap of DE lncRNAs among the four samples (TIFF 431 KB)

10725_2017_290_MOESM3_ESM.jpg

Fig. S3 GO enrichment analysis of the differentially expressed lncRNA and genes (DEGs) of the pepper variety ‘Luosijiao’ during the fruit development (JPG 620 KB)

10725_2017_290_MOESM4_ESM.tiff

Fig. S4 KEGG pathway of the differentially expressed genes (DEGs) in all the samples. A1, 30 DAA of ‘Luosijiao’, A2, 40 DAA of ‘Luosijiao’, A3, 50 DAA of ‘Luosijiao’, B1, 30 DAA of ‘06J19-1-1-1-2’ (TIFF 1801 KB)

10725_2017_290_MOESM5_ESM.tif

Fig. S5 The lncRNAs (TCONS_00030795) acts as a can-miR399a target mimic in pepper. Capana03g002858 (phytol kinase 1) was the target gene of can-miR399a (TIF 479 KB)

Supplementary material 1 (XLSX 782 KB)

Supplementary material 1 (XLSX 355 KB)

Supplementary material 1 (XLSX 447 KB)

Supplementary material 1 (XLSX 185 KB)

Supplementary material 1 (XLSX 89 KB)

Supplementary material 1 (XLSX 227 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ou, L., Liu, Z., Zhang, Z. et al. Noncoding and coding transcriptome analysis reveals the regulation roles of long noncoding RNAs in fruit development of hot pepper (Capsicum annuum L.). Plant Growth Regul 83, 141–156 (2017). https://doi.org/10.1007/s10725-017-0290-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-017-0290-3

Keywords

Navigation