Skip to main content
Log in

Isolation and functional analysis of MxCS3: a gene encoding a citrate synthase in Malus xiaojinensis, with functions in tolerance to iron stress and abnormal flower in transgenic Arabidopsis thaliana

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Iron (Fe) is one of the essential micronutrients required by all plants. Citric acid is considered as the chelate substance in the long distance transport of Fe. In this study, a gene encoding putative citrate synthase was isolated from Malus xiaojinensis and designated as MxCS3. The MxCS3 gene encoded a protein of 235 amino acid residues with a theoretical isoelectric point of 9.47 and a predicted molecular mass of 26.3 kDa. Subcellular localization study revealed that MxCS3 is preferentially localized in mitochondrion and cytoplasmic membrane. The expression of MxCS3 was enriched in leaf, phloem, and root, which was highly affected by Fe stress, indoleacetic acid and abscisic acid treatment in M. xiaojinensis seedlings. When MxCS3 was transferred into Arabidopsis thaliana, it improved Fe stress tolerance in transgenic Arabidopsis. Increased expression of MxCS3 in transgenic A. thaliana also led to increased fresh weight, root length, CS activity, and the contents of chlorophyll, citrate acid, Fe and Zn, especially when dealt with Fe stress. More importantly, we firstly found that ectopic expression of MxCS3 resulted in abnormal flowers in transgenic Arabidopsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abadía J, López-Millán AF, Rombolà A, Abadía A (2002) Organic acids and Fe deficiency: a review. Plant Soil 241:75–86

    Article  Google Scholar 

  • Alexandrov NN, Troukhan ME, Brover VV, Tatarinova T, Flavell RB, Feldmann KA (2006) Features of Arabidopsis genes and genome discovered using full-length cDNAs. Plant Mol Biol 60(1):69–85

    Article  CAS  PubMed  Google Scholar 

  • An G, Watson BD, Chang CC (1988) Transformation of tobacco, tomato, potato, and Arabidopsis using a binary Ti vector system. Plant Physiol 81:301–305

    Article  Google Scholar 

  • Aono M, Kubo A, Saji H, Tanaka K, Kondo N (1993) Enhanced tolerance to photo-oxidative stress of transgenic Nicotiana tabacum with high chloroplastic glutathione reductase activity. Plant cell Physiol 34:129–136

    CAS  Google Scholar 

  • Cataldo DA, McFadden KM, Garland TR, Wildung RE (1988) Organic constituents and complexation of nickel(II), iron(III), cadmium(II) and plutonium(IV) in soybean xylem exudates. Plant Physiol 86:34–39

    Article  Google Scholar 

  • Conte SS, Walker EL (2011) Transporters contributing to iron trafficking in plants. Mol Plant 4:464–476

    Article  CAS  PubMed  Google Scholar 

  • Durrett TP, Gassmann W, Rogers EE (2007) The FRD3-mediared efflux of citrate into the root vasculature is necessary for efficient iron translocation. Plant Physiol 144:197–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eckardt NA (2005) Peroxisomal citrate synthase provides exit route from fatty acid metabolism in oilseeds. Plant Cell 17(7):1863–1865

    Article  CAS  PubMed Central  Google Scholar 

  • Etienne C, Moing A, Dirlewanger E, Raymond P, Monet R, Rothan C (2002) Isolation and characterization of six peach cDNAs encoding key proteins in organic acid metabolism and solute accumulation: involvement in regulating peach fruit acidity. Plant Physiol 114:259–270

    Article  CAS  Google Scholar 

  • Gray NK, Pantopoulos K, Danderkar T, Ackrell BA, Hentze MW (1996) Translational regulation of mammalian and drosophila citric acid cycle enzymes via iron-responsive elements. Proc Natl Acad Sci USA 93:4925–4930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guerinot ML, Yi Y (1994) Iron: nutritious, noxious and not readily available. Plant Physiol 104:815–820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han ZH, Shen T, Korcak RF, Baligar VC (1998) Iron absorption by iron-efficient and inefficient species of apples. J Plant Nutr 2:181–190

    Article  Google Scholar 

  • Han DG, Wang Y, Zhang L, Ma L, Zhang XZ, Xu XF, Han ZH (2012) Isolation and functional characterization of MxCS1: a gene encoding a citrate synthase in Malus xiaojinensis. Biol Plant 56(1):50–56

    Article  CAS  Google Scholar 

  • Han DG, Wang L, Wang Y, Yang GH, Gao C, Yu ZY, Li TY, Zhang XZ, Ma L, Xu XF, Han ZH (2013a) Overexpression of Malus xiaojinensis CS1 gene in tobacco affects plant development and increases iron stress tolerance. Sci Hortic 150:65–72

    Article  CAS  Google Scholar 

  • Han DG, Yang GH, Xu KD, Shao Q, Yu ZY, Wang B, Ge QL, Yu Y (2013b) Overexpression of a Malus xiaojinensis Nas1 gene influences flower development and tolerance to iron stress in transgenic tobacco. Plant Mol Biol Rep 31:802–809

    Article  CAS  Google Scholar 

  • Han DG, Shi Y, Wang B, Liu W, Yu ZY, Lv BY, Yang GH (2015a) Isolation and preliminary functional analysis of MxCS2: a gene encoding a citrate synthase in Malus xiaojinensis. Plant Mol Biol Report 33:133–142

    Article  CAS  Google Scholar 

  • Han DG, Shi Y, Yu ZY, Liu W, Lv BY, Wang B, Yang GH (2015b) Isolation and functional analysis of MdCS1: a gene encoding a citrate synthase in Malus domestica (L.) Borkh. Plant Growth Regul 75:209–218

    Article  CAS  Google Scholar 

  • Hell R, Stephan UW (2003) Iron uptake, trafficking and homeoststasis in plants. Planta 216:541–551

    CAS  PubMed  Google Scholar 

  • Jelali N, Dell’orto M, Abdelly C, Gharsalli M, Zocchi G (2010) Changes of metabolic responses to direct and induced Fe deficiency of two Pisum sativum cultivars. Environ Exp Bot 68(3):238–246

    Article  CAS  Google Scholar 

  • Jiang KY, Zhou MB (2016) Cloning and functional characterization of PjPORB, a member of the POR gene family in Pseudosasa japonica cv. Akebonosuji. Plant Growth Regul 79:95–106

    Article  CAS  Google Scholar 

  • Kapoor S, Kobayashi A, Takatsuji H (2002) Silencing of the tapetumspecific zinc finger gene TAZ1 causes premature degeneration of tapetum and pollen abortion in petunia. Plant Cell 14:2353–2367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SA, Guerinot ML (2007) Mining iron: iron uptake and transport in plants. FEBS Lett 581:2273–2280

    Article  CAS  PubMed  Google Scholar 

  • Leek BT, Mudaliar SR, Henry R, Mathieu-Costello O, Richardson RS (2001) Effect of acute exercise on citrate synthase activity in untrained and trained human skeletal muscle. Am J Physiol Regul Integr Comp Physiol 280(2):441–447

    Google Scholar 

  • Li P, Qi JL, Wang L, Huang QN, Han ZH, Yin LP (2006) Functional expression of MxIRT1, from Malus xiaojinensis complements an iron uptake-deficient yeast mutant for plasma membrane targeting via a membrane vesicles trafficking process. Plant Sci 171:52–59

    Article  CAS  Google Scholar 

  • Ling HQ, Koch G, Baumlein H, Ganal MW (1999) Map-based cloning of chloronerva, a gene involved in iron uptake of higher plants encoding nicotianamine synthase. Proc Natl Acad Sci USA 96:7098–7103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2– ∆∆CT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • López-Millán AF, Morales F, Abadía A, Abadía J (2001) Iron deficiency-associated changes in the composition of the leaf apoplastic fluid from field-grown pear (Pyrus communis L.) trees. J Exp Bot 52:1489–1498

    Article  PubMed  Google Scholar 

  • López-Millán AF, Morales F, Gogorcena Y, Abadía A, Abadía J (2009) Metabolic responses in iron deficient tomato plants. J Plant Physiol 166:375–384

    Article  PubMed  Google Scholar 

  • López-Millán AF, Grusak MA, Abadía J (2012) Carboxylate metabolism changes induced by Fe deficiency in barley, a Strategy II plant species. J Plant Physiol 169(11):1121–1124

    Article  PubMed  Google Scholar 

  • Ma JF (2007) Syndrome of aluminum toxicity and diversity of aluminum resistance in higher plants. Int Rev Cytol 264:225–252

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Hiradate S (2000) Form of aluminium for uptake and translocation in buckwheat (Fagopyrum esculentum Moench). Planta 211(3):355–360

    Article  CAS  PubMed  Google Scholar 

  • Marschner H (2012) Marschner’s mineral nutrition of higher plants [M]. Academic Press, London

    Google Scholar 

  • Marschner H, Romheld V (1994) Strategies of plants for acquisition of iron. Plant Soil 165:261–274

    Article  CAS  Google Scholar 

  • Martínez-Cuenca MR, Iglesias DJ, Talón M, Abadía J, López-Millán AF, Primo-Millo E, Legaz F (2013) Metabolic responses to iron deficiency in roots of Carrizo citrange [Citrus sinensis (L.) Osbeck. × Poncirus trifoliata (L.) Raf.]. Tree Physiol 33(3):320–329

    Article  PubMed  Google Scholar 

  • Rellán-Álvarez R, Giner-Martínez-Sierra J, Orduna J, Orera I, Rodríguez-Castrillón JA, García-Alonso JI, Abadía J, Álvarez-Fernández A (2010) Identification of a tri-iron(III), tri-citrate complex in the xylem sap of iron-deficient tomato resupplied with iron: new insights into plant iron long-distance transport. Plant Cell Physiol 51(1):91–102

    Article  PubMed  Google Scholar 

  • Rombolà AD, Brüggemann W, López-Millán AF, Tagliavini M, Abadía J, Marangoni B, Moog PR (2002) Biochemical responses to iron deficiency in kiwifruit (Actinidia deliciosa). Tree Physiol 22(12):869–875

    Article  PubMed  Google Scholar 

  • Romheld V, Marschner H (1986) Evidence for a specific system for iron phytosiderophores in roots of grasses. Plant Physiol 80:175–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roschzttardtz H, Séguéla-Arnaud M, Briat JF, Vert G, Curie C (2011) The FRD3 citrate effluxer promotes iron nutrition between symplastically disconnected tissues throughout Arabidopsis development. Plant Cell 23(7):2725–2737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schikora A, Schmidt W (2001) Acclimative changes in root epidermal cell fate in response to Fe and P deficiency: a specific role for auxin? Protoplasma 218:67–75

    Article  CAS  PubMed  Google Scholar 

  • Schmidt W, Tittel J, Schikora A (2000) Role of hormones in the induction of iron deficiency responses in Arabidopsis roots. Plant Physiol 122(4):1109–1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen J, Xu XF, Li TZ, Cao DM, Han ZH (2008) An MYB transcription factor from Malus xiaojinensis has a potential role in iron nutrition. J Integr Plant Biol 50(10):1300–1306

    Article  CAS  PubMed  Google Scholar 

  • Slabas AR, Ndimba B, Simon WJ, Chivasa S (2004) Proteomic analysis of the Arabidopsis cell wall reveals unexpected proteins with new cellular locations. Biochem Soc Trans 32(3):524–528

    Article  CAS  PubMed  Google Scholar 

  • Takahashi M, Terada Y, Nakai I, Nakanishi H, Yoshimura E, Mori S, Nishizawa NK (2003) Role of nicotianamine in the intracellular delivery of metals and plant reproductive development. Plant Cell 15:1263–1280

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takita E, Koyama H, Shirano Y, Shibata D, Hara T (1999) Structure and expression of the mitochondrial citrate synthase gene in carrot cells utilizing Al-phosphate. Soil Sci Plant Nutr 45:197–205

    Article  CAS  Google Scholar 

  • Thimm O, Essigmann B, Kloska S, Altmann T, Buckhout TJ (2001) Response of Arabidopsis to iron deficiency stress as revealed by microarray analysis. Plant Physiol 127(3):1030–1043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang YP, Wu YH, Zheng GH, Zhang JP, Xu GD (2013) Effects of potassium on organic acid metabolism of Fe-sensitive and Fe-resistant rices (‘Oryza sativa’ L.). Aust J Crop Sci 7(6):843

    CAS  Google Scholar 

  • Wu T, Zhang HT, Wang Y, Jia WS, Xu XF, Zhang XZ, Han ZH (2012) Induction of root Fe(lll) reductase activity and proton extrusion by iron deficiency is mediated by auxin-based systemic signalling in Malus xiaojinensis. J Exp Bot 63:859–870

    Article  CAS  PubMed  Google Scholar 

  • Xu HM, Wang Y, Chen F, Zhang XZ, Han ZH (2011) Isolation and characterization of the iron-regulated MxbHLH01 gene in Malus xiaojinensis. Plant Mol Biol Rep 29:936–942

    Article  CAS  Google Scholar 

  • Yang GH, Li J, Liu W, Yu ZY, Shi Y, Lv BY, Wang B, Han DG (2015) Molecular cloning and characterization of MxNAS2, a gene encoding nicotianamine synthase in Malus xiaojinensis, with functions in tolerance to iron stress and misshapen flower in transgenic tobacco. Sci Hortic 183:77–86

    Article  CAS  Google Scholar 

  • Yin LL, Wang Y, Yan MD, Zhang XZ, Pan HF, Xu XF, Han ZH (2013) Molecular cloning, polyclonal antibody preparation, and characterization of a functional iron-related transcription factor IRO2 from Malus xiaojinensis. Plant Physiol Biochem 67:63–70

    Article  CAS  PubMed  Google Scholar 

  • Yokosho K, Yamaji N, Ueno D, Mitani N, Ma JF (2009) OsFRDL1 is a citrate transporter required for efficient translocation of iron in rice. Plant Physiol 149(1):297–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang YG, Kong J, Wang Y, Xu XF, Liu LL, Li TZ, Han ZH, Zhu YJ (2009) Isolation and characterisation of a nicotianamine synthase gene MxNas1 in Malus xiaojinensis. J Hortic Sci. Biotechnol 84(1):47–52

    Article  CAS  Google Scholar 

  • Zhang Q, Wang Y, Zhang XZ, Yin LL, Wu T, Xu XF, Jia WS, Han ZH (2012) Cloning and characterization of MxVHA-c, a vacuolar H+-ATPase subunit C gene related to Fe efficiency from Malus xiaojinensis. Plant Mol Biol Rep 30:1149–1157

    Article  CAS  Google Scholar 

  • Zhu YJ, Wang Y, Kong J, Wang J, Zhang XZ, Han ZH (2009) Role of SAMS gene in Fe uptake mechanism of Malus xiaojinensis. Acta Hortic 2:463–469

    Article  Google Scholar 

Download references

Acknowledgements

This project was supported by National Natural Science Foundation of China (31301757), Natural Science Foundation of Heilongjiang Province of China (C2015015), Academic Backbone Project of Northeast Agricultural University (15XG06), Scientific Research Fund of Heilongjiang Provincial Education Department (12541004), Heilongjiang Postdoctoral Science Foundation (LBH-Q16020), the Open Project of Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture (neauhc201602) and the Science and Technology Innovation Project for Undergraduate of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture (NEAU-HC-UNDS-201606). The authors are grateful Dr. Wei Liu for the English correction of the paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Deguo Han or Guohui Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, D., Wang, Y., Zhang, Z. et al. Isolation and functional analysis of MxCS3: a gene encoding a citrate synthase in Malus xiaojinensis, with functions in tolerance to iron stress and abnormal flower in transgenic Arabidopsis thaliana . Plant Growth Regul 82, 479–489 (2017). https://doi.org/10.1007/s10725-017-0274-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-017-0274-3

Keywords

Navigation