Skip to main content
Log in

Comprehensive analysis of differentially expressed genes under salt stress in pear (Pyrus betulaefolia) using RNA-Seq

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Pear is one of the most important fruit trees in temperate zones, and is cultivated widely throughout the world. Salt stress affects the normal growth of pear, and further affects fruit yield and quality. Pyrus betulaefolia is a common rootstock in pear orchards, which can improve salt tolerance by grafting pear onto it. However, limited availability of P. betulaefolia genomic information has hindered research on the mechanisms underlying this tolerance. Consequently, we comprehensively analyzed P. betulaefolia salt tolerance using RNA-Seq under NaCl and NaCl + LaCl3 treatments in leaf and root. Based on mapping analyses, 3796 novel transcripts were identified, which contained 18 differentially expressed genes (DEGs). There were 90,752 alternative splicing events identified, with transcription start site and transcription terminal site as the major splicing patterns. In addition, we identified 583 differential expressed exons. A total of 276 DEGs were identified among all six comparisons, and 237 of these were up-regulated and 39 were down-regulated. One DEG (Pbr038831.1) was detected in all treatments, and was up-regulated. All DEGs were divided into three clusters according to hierarchical clustering. Kyoto Encyclopedia of Genes and Genomes enrichment analyses showed that 18 DEGs were located in six significantly enriched terms, and specific enriched categories and DEGs were identified for NaCl and NaCl + LaCl3 treatments. All of these enriched genes may be related to salt stress in P. betulaefolia. This transcriptome analysis will provide a rich genetic resource for gene discovery related to salt tolerance in P. betulaefolia and closely related species. The data will serve as an important public information platform to further understanding of the molecular mechanisms involved in salt tolerance in P. betulaefolia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DEG:

Differentially expressed gene

TSS:

Transcription start site

TTS:

Transcription terminal site

PCC:

Pearson’s correlation coefficient

DEU:

Differential exon usage

AEU:

Alternative exon usage

RPKM:

Reads per kilobase per million reads

GO:

Gene ontology

KEGG:

Kyoto encyclopedia of genes and genomes

DEE:

Differential expressed exon

CKR:

Control for root

CKL:

Control for leaf

NR:

NaCl treatment for root

NL:

NaCl treatment for leaf

NLR:

NaCl + LaCl3 treatment for root

NLL:

NaCl + LaCl3 treatment for leaf

qRT-PCR:

Quantitative real-time PCR

NUDT4:

Nudix hydrolase homolog 4

References

  • Anders S, Reyes A, Huber W (2012) Detecting differential usage of exons from RNA-seq data. Genome Res 22(10):2008–2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anders S, Pyl PT, Huber W (2015) HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31(2):166–169

    Article  CAS  PubMed  Google Scholar 

  • Black DL (2003) Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem 72:291–336

    Article  CAS  PubMed  Google Scholar 

  • Cao Y, Han Y, Li D, Lin Y, Cai Y (2016) MYB transcription factors in Chinese pear (Pyrus bretschneideri Rehd.): genome-wide identification, classification, and expression profiling during fruit development. Front Plant Sci 7:577

    PubMed  PubMed Central  Google Scholar 

  • Chang YH, Li H, Cong Y, Lin J, Sheng BL (2012) Characterization and expression of a phytochelatin synthase gene in birch-leaf pear (Pyrus betulaefolia Bunge). Plant Mol Biol Rep 30(6):1329–1337

    Article  CAS  Google Scholar 

  • Cha-um S, Samphumphuang T, Kirdmanee C (2013) Morphological and physio-biochemical changes of in vitro cactus (Echinopsis calochlora) in responses to salt stress. Eur J Hortic Sci 78(5):225–231

    CAS  Google Scholar 

  • Cheeseman JM (2015) The evolution of halophytes, glycophytes and crops, and its implications for food security under saline conditions. New Phytol 206(2):557–570

    Article  PubMed  Google Scholar 

  • Chen S, Polle A (2010) Salinity tolerance of Populus. Plant Biol 12(2):317–333

    Article  CAS  PubMed  Google Scholar 

  • Cuartero J, Bolarin MC, Asins MJ, Moreno V (2006) Increasing salt tolerance in the tomato. J Exp Bot 57(5):1045–1058

    Article  CAS  PubMed  Google Scholar 

  • Dang ZH, Zheng LL, Wang J, Gao Z, Wu SB, Qi Z, Wang YC (2013) Transcriptomic profiling of the salt-stress response in the wild recreto halophyte Reaumuria trigyna. BMC Genom 14:29

    Article  CAS  Google Scholar 

  • Filichkin SA, Priest HD, Givan SA, Shen R, Bryant DW, Fox SE, Wong WK, Mockler TC (2010) Genome-wide mapping of alternative splicing in Arabidopsis thaliana. Genome Res 20(1):45–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Florea L, Song L, Salzberg SL (2013) Thousands of exon skipping events differentiate among splicing patterns in sixteen human tissues. F1000Research 2:188

    PubMed  PubMed Central  Google Scholar 

  • Gao XP, Yan JY, Liu EK, Shen YY, Lu YF, Zhang DP (2004) Water stress induces in pear leaves the rise of betaine level that is associated with drought tolerance in pear. J Hortic Sci Biotech 79(1):114–118

    Article  CAS  Google Scholar 

  • Grabowski P (2011) Alternative splicing takes shape during neuronal development. Curr Opin Genet Dev 21(4):388–394

    Article  CAS  PubMed  Google Scholar 

  • Gu R, Fonseca S, Puskas LG, Hackler L Jr, Zvara A, Dudits D, Pais MS (2004) Transcript identification and profiling during salt stress and recovery of Populus euphratica. Tree Physiol 24(3):265–276

    Article  CAS  PubMed  Google Scholar 

  • Hanada K, Sawada Y, Kuromori T, Klausnitzer R, Saito K, Toyoda T, Shinozaki K, Li WH, Hirai MY (2011) Functional compensation of primary and secondary metabolites by duplicate genes in Arabidopsis thaliana. Mol Biol Evol 28(1):377–382

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Phys 51:463–499

    Article  CAS  Google Scholar 

  • Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA 103(35):12987–12992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Phys 47:377–403

    Article  CAS  Google Scholar 

  • Joung YH, Youm JW, Jeon JH, Lee BC, Ryu CJ, Hong HJ, Kim HC, Joung H, Kim HS (2004) Expression of the hepatitis B surface S and preS2 antigens in tubers of Solanum tuberosum. Plant Cell Rep 22(12):925–930

    Article  CAS  PubMed  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keren H, Lev-Maor G, Ast G (2010) Alternative splicing and evolution: diversification, exon definition and function. Nat Rev Genet 11(5):345–355

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14(4):R36

    Article  PubMed  PubMed Central  Google Scholar 

  • Li X, Dong W, Lin J, Wang Z, Wang Q, Chang Y, Zhang Z (2015) Structural, physiological and biochemical responses of Pyrus calleryana offspring to salt stress. Eur J Hortic Sci 80(6):306–315

    Article  CAS  Google Scholar 

  • Lin HX, Zhu MZ, Yano M, Gao JP, Liang ZW, Su WA, Hu XH, Ren ZH, Chao DY (2004) QTLs for Na+ and K+ uptake of the shoots and roots controlling rice salt tolerance. Theor Appl Genet 108(2):253–260

    Article  CAS  PubMed  Google Scholar 

  • Liu G, Li W, Zheng P, Xu T, Chen L, Liu D, Hussain S, Teng Y (2012) Transcriptomic analysis of ‘Suli’ pear (Pyrus pyrifolia white pear group) buds during the dormancy by RNA-SEq. BMC Genom 13:700

    Article  CAS  Google Scholar 

  • Mao X, Cai T, Olyarchuk JG, Wei L (2005) Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics 21(19):3787–3793

    Article  CAS  PubMed  Google Scholar 

  • Matlin AJ, Clark F, Smith CW (2005) Understanding alternative splicing: towards a cellular code. Nat Rev Mol Cell Biol 6(5):386–398

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto K, Chun JP, Tamura F, Kamamoto Y, Tanabe K (2006) Salt tolerance in Pyrus species is linked to levels of Na and Cl translocation from roots to leaves. Engei Gakkai Zasshi 75(5):385–391

    Article  CAS  Google Scholar 

  • Matsumoto K, Tamura F, Chun JP, Ikeda T, Imanishi K, Tanabe K (2007) Enhancement in salt tolerance of Japanese pear by using Pyrus betulaefolia rootstock(soil management, fertilization & irrigation). Hortic Res 6:47–52

    Article  Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-SEq. Nat Methods 5(7):621–628

    Article  CAS  PubMed  Google Scholar 

  • Motomura K, Le QT, Kumakura N, Fukaya T, Takeda A, Watanabe Y (2012) The role of decapping proteins in the miRNA accumulation in Arabidopsis thaliana. RNA Biol 9(5):644–652

    Article  CAS  PubMed  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25(2):239–250

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Nakamichi N, Takao S, Kudo T, Kiba T, Wang Y, Kinoshita T, Sakakibara H (2016) Improvement of Arabidopsis biomass and cold, drought and salinity stress tolerance by modified circadian clock-associated pseudo-response regulators. Plant Cell Physiol 57(5):1085–1097

    Article  CAS  PubMed  Google Scholar 

  • Nilsen TW, Graveley BR (2010) Expansion of the eukaryotic proteome by alternative splicing. Nature 463(7280):457–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okubo M, Sakuratani T (2000) Effects of sodium chloride on survival and stem elongation of two Asian pear rootstock seedlings. Sci Hortic-Amsterda 85(1):85–90

    Article  CAS  Google Scholar 

  • Okubo M, Furukawa Y, Sakuratani T (2000) Growth, flowering and leaf properties of pear cultivars grafted on two Asian pear rootstock seedlings under NaCl irrigation. Sci Hortic-Amsterda 85(1):91–101

    Article  CAS  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60(3):324–349

    Article  CAS  PubMed  Google Scholar 

  • Peng Z, He S, Gong W, Sun J, Pan Z, Xu F, Lu Y, Du X (2014) Comprehensive analysis of differentially expressed genes and transcriptional regulation induced by salt stress in two contrasting cotton genotypes. BMC Genom 15:760

    Article  Google Scholar 

  • Rizwan M, Ali S, Ibrahim M, Farid M, Adrees M, Bharwana SA, Zia-Ur-Rehman M, Qayyum MF, Abbas F (2015) Mechanisms of silicon-mediated alleviation of drought and salt stress in plants: a review. Environ Sci Pollut R 22(20):15416–15431

    Article  CAS  Google Scholar 

  • Roy SJ, Negrao S, Tester M (2014) Salt resistant crop plants. Curr Opin Biotech 26:115–124

    Article  CAS  PubMed  Google Scholar 

  • Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31(3):279–292

    Article  CAS  PubMed  Google Scholar 

  • Sheveleva E, Chmara W, Bohnert HJ, Jensen RG (1997) Increased salt and drought tolerance by D-ononitol production in transgenic Nicotiana tabacum L. Plant Physiol 115(3):1211–1219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi H, Ishitani M, Kim C, Zhu JK (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci USA 97(12):6896–6901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi H, Lee BH, Wu SJ, Zhu JK (2003) Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat Biotechnol 21(1):81–85

    Article  CAS  PubMed  Google Scholar 

  • Song X, Li Y, Liu T, Duan W, Huang Z, Wang L, Tan H, Hou X (2014) Genes associated with agronomic traits in non-heading Chinese cabbage identified by expression profiling. BMC Plant Biol 14:71

    Article  PubMed  PubMed Central  Google Scholar 

  • Song X, Duan W, Huang Z, Liu G, Wu P, Liu T, Li Y, Hou X (2015a) Comprehensive analysis of the flowering genes in Chinese cabbage and examination of evolutionary pattern of CO-like genes in plant kingdom. Sci Rep 5:14631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song X, Ge T, Li Y, Hou X (2015b) Genome-wide identification of SSR and SNP markers from the non-heading Chinese cabbage for comparative genomic analyses. BMC Genom 16:328

    Article  Google Scholar 

  • Song X, Liu G, Huang Z, Duan W, Tan H, Li Y, Hou X (2016) Temperature expression patterns of genes and their coexpression with LncRNAs revealed by RNA-Seq in non-heading Chinese cabbage. BMC Genom 17(1):297

    Article  Google Scholar 

  • Tian DQ, Pan XY, Yu YM, Wang WY, Zhang F, Ge YY, Shen XL, Shen FQ, Liu XJ (2013) De novo characterization of the Anthurium transcriptome and analysis of its digital gene expression under cold stress. BMC Genom 14:827

    Article  CAS  Google Scholar 

  • Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28(5):511–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7(3):562–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuteja N (2007) Mechanisms of high salinity tolerance in plants. Method Enzymol 428:419–438

    Article  CAS  Google Scholar 

  • Walley JW, Kelley DR, Nestorova G, Hirschberg DL, Dehesh K (2010) Arabidopsis deadenylases AtCAF1a and AtCAF1b play overlapping and distinct roles in mediating environmental stress responses. Plant Physiol 152(2):866–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218(1):1–14

    Article  CAS  PubMed  Google Scholar 

  • Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, Kingsmore SF, Schroth GP, Burge CB (2008) Alternative isoform regulation in human tissue transcriptomes. Nature 456(7221):470–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Feng Z, Wang X, Wang X, Zhang X (2010) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26(1):136–138

    Article  PubMed  Google Scholar 

  • Wang J, Li B, Meng Y, Ma X, Lai Y, Si E, Yang K, Ren P, Shang X, Wang H (2015) Transcriptomic profiling of the salt-stress response in the halophyte Halogeton glomeratus. BMC Genom 16(1):1373

    Google Scholar 

  • Wu HJ, Zhang Z, Wang JY, Oh DH, Dassanayake M, Liu B, Huang Q, Sun HX, Xia R, Wu Y, Wang YN, Yang Z, Liu Y, Zhang W, Zhang H, Chu J, Yan C, Fang S, Zhang J, Wang Y, Zhang F, Wang G, Lee SY, Cheeseman JM, Yang B, Li B, Min J, Yang L, Wang J, Chu C, Chen SY, Bohnert HJ, Zhu JK, Wang XJ, Xie Q (2012) Insights into salt tolerance from the genome of Thellungiella salsuginea. Proc Natl Acad Sci USA 109(30):12219–12224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Wang Z, Shi Z, Zhang S, Ming R, Zhu S, Khan MA, Tao S, Korban SS, Wang H et al (2013) The genome of the pear (Pyrus bretschneideri Rehd.). Genome Res 23(2):396–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie M, Huang Y, Zhang Y, Wang X, Yang H, Yu O, Dai W, Fang C (2013) Transcriptome profiling of fruit development and maturation in Chinese white pear (Pyrus bretschneideri Rehd). BMC Genom 14:823

    Article  CAS  Google Scholar 

  • Xu YY, Li XG, Lin J, Wang ZH, Yang QS, Chang YH (2015) Transcriptome sequencing and analysis of major genes involved in calcium signaling pathways in pear plants (Pyrus calleryana Decne.). BMC Genom 16

  • Yokoi S, Quintero FJ, Cubero B, Ruiz MT, Bressan RA, Hasegawa PM, Pardo JM (2002) Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response. Plant J 30(5):529–539

    Article  CAS  PubMed  Google Scholar 

  • Young MD, Wakefield MJ, Smyth GK, Oshlack A (2010) Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol 11(2):R14

    Article  PubMed  PubMed Central  Google Scholar 

  • Zahaf O, Blanchet S, de Zelicourt A, Alunni B, Plet J, Laffont C, de Lorenzo L, Imbeaud S, Ichante JL, Diet A, Badri M, Zabalza A, Gonzalez EM, Delacroix H, Gruber V, Frugier F, Crespi M (2012) Comparative transcriptomic analysis of salt adaptation in roots of contrasting Medicago truncatula genotypes. Mol Plant 5(5):1068–1081

    Article  CAS  PubMed  Google Scholar 

  • Zhang HX, Blumwald E (2001) Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotechnol 19(8):765–768

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Feng J, Lu J, Yang Y, Zhang X, Wan D, Liu J (2014) Transcriptome differences between two sister desert poplar species under salt stress. BMC Genom 15:337

    Article  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Jiangsu Agriculture Science and Technology Innovation Fund of China [CX(14)5018] and the National Natural Sciences Foundation of China (Grant Nos. 31372051 and 31540052). We also thank Genepioneer Biotechnologies for their help with the bioinformatics analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to You-Hong Chang.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2328 KB)

Supplementary material 2 (XLSX 10294 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Lin, J., Yang, QS. et al. Comprehensive analysis of differentially expressed genes under salt stress in pear (Pyrus betulaefolia) using RNA-Seq. Plant Growth Regul 82, 409–420 (2017). https://doi.org/10.1007/s10725-017-0266-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-017-0266-3

Keywords

Navigation