Skip to main content
Log in

Effect of exogenous Brassinolide (BR) application on the morphology, hormone status, and gene expression of developing lateral roots in Malus hupehensis

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Malus hupehensis seedlings were treated with exogenous applications of 0.5 mg L−1 brassinolide (BR) in order to investigate the mechanism by which BR promotes and effects lateral root development. Root morphology, plant height, plant crown diameter, and endogenous levels of Brassinolide (BR), Auxin (IAA), Abscisic acid (ABA), and Gibberellin (GA3) in lateral roots were evaluated. Additionally, differential gene expression of genes related to root development were examined in treated and untreated roots by RT-qPCR during lateral root development. Results indicated that BR treatment promoted both root and shoot growth and auxin levels increased, while ABA and GA3 declined. Additionally, there was also a significant upregulation in the expression of MdBAK1, MdBRI1, and MdBZR1 in response to the BR treatment. Transcript levels of key auxin synthesis and transport genes, such as MdYUCCA6, MdYUCCA10, MdPIN1, MdPIN2, MdPIN3, which corresponded with higher auxin levels in the BR-treated samples. MdIAA23 were induced, but the expression of MdIAA5, a negative regulator of MdARF7 and MdARF19, was downregulated in BR-treated apple seedlings, leading to an elevated expression of MdARRO1; which in turn increased lateral root development. On the other hand, MdBRI1 induced MdWOX5 expression, resulting in enhanced expression of the cell cycle related genes: MdCYCD1;1, MdCYCD3;1, and MdCYCD3;2; leading to upregulated expression of MdLBD29. Collectively, the changes in gene expression and hormone levels resulted in an increased number of lateral roots, and other growth characteristics in BR-treated plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Artlip TS (2016) An apple rootstock overexpressing a peach CBF gene alters growth and flowering in the scion but does not impact cold hardiness or dormancy. Hortic Res 3:16006

    Article  PubMed  PubMed Central  Google Scholar 

  • Bao F,  Shen J, Muday GK et al (2004) Brassinosteroids interact with auxin to promote lateral root development in Arabidopsis. Plant Physiol 134(4):1624–1631  

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergonci T, Ribeiro B, Ceciliato PH, Guerreroabad JC, Silvafilho, M C, Moura DS (2014) Arabidopsis thaliana ralf1 opposes brassinosteroid effects on root cell elongation and lateral root formation. J Exp Bot 65(8):2219–2230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brady SM, Sarkar SF, Bonetta D, Mc Court P (2003) The ABSCISIC ACID INSENSITIVE 3 (ABI3) gene is modulated by farnesylation and is involved in auxin signaling and lateral root development in Arabidopsis. Plant J 34(1):67–75

    Article  CAS  PubMed  Google Scholar 

  • Chaiwanon J, and Wang Z Y (2015) Spatiotemporal brassinosteroid signaling and antagonism with auxin pattern stem cell dynamics in Arabidopsis roots. Curr Biol Cb 25(8):1031–1042

    Article  CAS  PubMed  Google Scholar 

  • Chen CW, Yang YW, Lur HS, Tsai YG, Chang MC (2006) A novel function of abscisic acid in the regulation of rice (Oryza sativa L.) root growth and development. Plant Cell Physiol 47(1):1–13

    Article  PubMed  Google Scholar 

  • Cheng Y, Dai X, Zhao Y (2006) Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes Dev 20(13):1790–1799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clouse SD, Langford M, McMorris TC (1996) A brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development. Plant Physiol 111(3):671–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui H, Hao Y, Kovtun M et al (2011) Genome-wide direct target analysis reveals a role for SHORT-ROOT in root vascular patterning through cytokinin homeostasis. Plant Physiol 157(3):1221–1231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Depuydt S, Hardtke CS (2011) Hormone signalling crosstalk in plant growth regulation. Curr Biol 21(9):R365–R373

    Article  CAS  PubMed  Google Scholar 

  • Ding J, Mao LJ, Wang ST et al (2013) Determination of endogenous brassinosteroids in plant tissues using solid-phase extraction with double layered cartridge followed by High-performance liquid chromatography–tandem mass spectrometry. Phytochem Anal 24(4):386–394

    Article  CAS  PubMed  Google Scholar 

  • Dobrev PI, Kamínek M (2002) Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction. J Chromatogr A 950(1–2):21–29

    Article  PubMed  Google Scholar 

  • Dockter C, Gruszka D, Braumann I et al (2014) Induced variations in brassinosteroid genes define barley height and sturdiness, and expand the green revolution genetic toolkit. Plant Physiol 166(4):1912–1927

    Article  PubMed  PubMed Central  Google Scholar 

  • Feng Z, Sun X, Wang G et al (2012) LBD29 regulates the cell cycle progression in response to auxin during lateral root formation in Arabidopsis thaliana. Ann Bot (Lond) 110(1):1–10

    Article  CAS  Google Scholar 

  • Ferreira P C G, Hemerly AS, de Almeida Engler L, Van Montagu M, Engler G, InzéD (1994) Developmental expression of the Arabidopsis cyclin gene cyc1At. Plant Cell 6(12):1763–1774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forzani C, Aichinger E, Sornay E, Willemsen V, Laux T, Dewitte W, Murray JA (2014) WOX5 suppresses CYCLIN D activity to establish quiescence at the center of the root stem cell niche. Curr Biol 24(16):1939–1944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gambino G, Perrone I, Gribaudo I (2008) A rapid and effective method for RNA extraction from different tissues of grapevine and other woody plants. Phytochem Anal 19(6):520–525

    Article  CAS  PubMed  Google Scholar 

  • Gifford ML, Dean A, Gutierrez RA, Coruzzi GM, Birnbaum KD (2008) Cell-specific nitrogen responses mediate developmental plasticity. Proc Natl Acad Sci USA 105(2):803–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • González-García M P, Vilarrasablasi J, Zhiponova M et al (2011) Brassinosteroids control meristem size by promoting cell cycle progression in Arabidopsis roots. Development 138(5):849–859

  • Gou J, Strauss SH, Tsai CJ, Fang K, Chen Y, Jiang X, Busov VB (2010) Gibberellin regulate lateral root formation in Populus through interactions with auxin and other hormones. Plant Cell 22(3):623–639

    Article  CAS  PubMed  Google Scholar 

  • Gray WM, Kepinski S, Rouse D, Leyser O, Estelle M (2001) Auxin regulates SCF TIR1-dependent degradation of AUX/IAA proteins. Nature 414(6861):271–276

    Article  CAS  PubMed  Google Scholar 

  • Grieneisen VA, Xu J, Marée A F M, Hogeweg P, Scheres B (2007) Auxin transport is sufficient to generate a maximum and gradient guiding root growth. Nature 449(7165):1008–1013

    Article  CAS  PubMed  Google Scholar 

  • Guo H, Li L, Aluru M et al (2013) Mechanisms and networks for brassinosteroid regulated gene expression. Curr Opin Plant Biol 16(5):545–553

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez L, Bussell JD, Păcurar DI et al (2009) Phenotypic plasticity of adventitious rooting in Arabidopsis is controlled by complex regulation of AUXIN RESPONSE FACTOR transcripts and microRNA abundance. Plant Cell 21(10):3119–3132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He K, Gou X, Yuan T et al (2007) BAK1 and BKK1 regulate brassinosteroid-dependent growth and brassinosteroid-independent cell-death pathways. Curr Biol 17(13):1109–1115

    Article  CAS  PubMed  Google Scholar 

  • Helariutta Y, Fukaki H, Wysocka-Diller J, Nakajima K, Jung J, Sena G, Hauser MT, Benfey PN (2000) The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling. Cell 101(5):555–567

    Article  CAS  PubMed  Google Scholar 

  • Kauschmann A, Jessop A, Koncz C et al (1996) Genetic evidence for an essential role of brassinosteroids in plant development. Plant J 9(5):701–713

    Article  CAS  Google Scholar 

  • Kinoshita N, Wang H, Kasahara H et al (2012) IAA-Ala Resistant3, an evolutionarily conserved target of miR167, mediates Arabidopsis root architecture changes during high osmotic stress. Plant Cell 24(9):3590–3602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong DY, Yue I, Hong C (2016) The WUSCHEL related homeobox protein WOX7 regulates the sugar response of lateral root development in Arabidopsis thaliana. Mol Plant 9(2):261–270

    Article  CAS  PubMed  Google Scholar 

  • Kuppusamy KT, Chen AY, Nemhauser JL (2009) Steroids are required for epidermal cell fate establishment in Arabidopsis roots. Proc Natl Acad Sci USA 106(19):8073–8076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Latha P, Vardhini B (2016) Effect of brassinolide on the growth of mustard crops grown in semi-arid tropics of Nizamabad. Int J Plant Soil Sci 9(1):1–5

    Article  Google Scholar 

  • Lee SH, Kim Y, Pham G et al (2015) Brassinazole resistant 1 (BZR1)-dependent brassinosteroid signalling pathway leads to ectopic activation of quiescent cell division and suppresses columella stem cell differentiation. J Exp Bot 66(15):4835–4849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Wen J, Lease KA et al (2002) BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signalling. Cell 110(2):213–222

    Article  CAS  PubMed  Google Scholar 

  • Li L, Xu J, Xu ZH et al (2005) Brassinosteroids stimulate plant tropisms through modulation of polar auxin transport in Brassica and Arabidopsis. Plant Cell 17(10):2738–2753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2–∆∆CT Method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Malamy JE, Benfey PN (1997) Organization and cell differentiation in lateral roots of Arabidopsis thaliana. Development 124(1):33

    CAS  PubMed  Google Scholar 

  • McKay MJ, Ross JJ, Lawrence NL et a1 (1994) Control ofinternode length in pisumsativum further evidence for the involvement of indole-3.acetic acid. Plant Physiol 106(4):1521–1526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mimida N, Kidou S, Iwanami H et al (2011) Apple FLOWERING LOCUS T proteins interact with transcription factors implicated in cell growth and organ development. Tree Physiol 31(31):555–566

    Article  PubMed  Google Scholar 

  • Mouchel CF, Osmont KS, Hardtke CS (2006) BRX mediates feedback between brassinosteroid levels and auxin signalling in root growth. Nature 443(7110):458–461

    Article  CAS  PubMed  Google Scholar 

  • Müller A, Guan C, Gälweiler L, Tänzler P, Huijser P, Marchant A, Parry G, Bennett M, Wisman E, Palme K (1998) AtPIN2 defines a locus of Arabidopsis for root gravitropism control. EMBO J 17(23):6903–6911

    Article  PubMed  PubMed Central  Google Scholar 

  • Müssig C, Shin GH, Altmann T (2003) Brassinosteroids promote root growth in Arabidopsis. Plant Physiol 133(3):1261–1271

    Article  PubMed  PubMed Central  Google Scholar 

  • Nagase T, Takase H, Sekiya J et al (2015) The axhs1/dwf4 auxin-hypersensitive mutant of Arabidopsis thaliana defines a link for integration of auxin and brassinosteroid mediated root elongation. Plant Biotechnology 32(2):125–137

    Article  CAS  Google Scholar 

  • Nagata T, Saitou K (2009) Regulation of expression of D3-type cyclins and ADP-glucose pyrophosphorylase genes by sugar, cytokinin and ABA in sweet potato (Ipomoea batatas Lam.). Plant Production. Science 12(4):434–442

    CAS  Google Scholar 

  • Nakaya M, Tsukaya H, Murakami N et al (2002) Brassinosteroids control the proliferation of leaf cells of Arabidopsis thaliana. Plant Cell Physiol 43(2):239–244

    Article  CAS  PubMed  Google Scholar 

  • Nam KH, Li J (2002) BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling. Cell 110(2):203–212

    Article  CAS  PubMed  Google Scholar 

  • Nemhauser J L, Mockler T C, Chory J (2004) Interdependency of brassinosteroid and auxin signaling in Arabidopsis. PLoS Biol 2(9):e258

    Article  PubMed  PubMed Central  Google Scholar 

  • Ni J, Wang GH, Zhu ZX, Zhang HH, Wu YR, Wu P (2011) OsIAA23-mediated auxin signaling defines postembryonic maintenance of QC in rice. Plant J 68(3):433–442

    Article  CAS  Google Scholar 

  • Okushima Y, Overvoorde PJ, Arima K et al (2005) Functional genomic analysis of the AUXIN RESPONSE FACTOR gene familymembers in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19. Plant Cell 17(2):444–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okushima Y, Fukaki H, Onoda M, Theologis A, Tasaka M (2007) ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis. Plant Cell 19(1):118–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orman-Ligeza B, Parizot B, Gantet PP et al (2013) Post-embryonic root organogenesis in cereals: branching out from model plants. Trends Plant Sci 18(8):459–467

    Article  CAS  PubMed  Google Scholar 

  • Pi L, Aichinger E, Vandergraaff E, Llavata-Peris C, Weijers D, Hennig L et al (2015) Organizer-derived WOX5 signal maintains root columella stem cells through chromatin-mediated repression of CDF4 expression. Dev Cell 33(5):576–588

    Article  CAS  PubMed  Google Scholar 

  • Schlagnhaufer C, Arteca RN, Yopp JH (1984) Evidence that brassinosteroid stimulates auxin-induced ethylene synthesis in mung bean hypocotyls between s-adenosylmethionine and 1-aminocyclopropane – 1- carboxylic acid. Physiol Plant 61(4):555–558

    Article  CAS  Google Scholar 

  • Shimada Y, Goda H, Nakamura A et al (2003) Organ-specific expression of brassinosteroid-biosynthetic genes and distribution of endogenous brassinosteroids in Arabidopsis. Plant Physiol 131(1):287–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smolka A, Welander M, Olsson P et al (2009) Involvement of the ARRO-1, gene in adventitious root formation in apple. Plant Sci 177(6):710–715

    Article  CAS  Google Scholar 

  • Sun Y, Fan XY, Cao DM, Tang WQ, He K, Zhu JY, He JX, Bai MY, Zhu SW, Oh E et al (2010) Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis. Dev Cell 19(5):765–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas P, Lee MM, Schiefelbein J (2003) Molecular identification of proline-rich protein genes induced during rootformation in grape (Vitisvinifera L.) stem cuttings. Plant Cell Environ 26(9):1497–1504

    Article  CAS  Google Scholar 

  • Wei Z, Li J (2016) Brassinosteroids regulate root growth, development, and symbiosis. Mol Plant 9(1):86–100

    Article  CAS  PubMed  Google Scholar 

  • Wells CE, Eissenstat DM (2001) Marked differences in survivorship among apple roots of different diameters. Ecology 82(3):882–892

    Article  Google Scholar 

  • Yan L, Ma Y, Liu D et al (2012) Structural basis for the impact of phosphorylation on the activation of plant receptor-like kinase BAK1. Cell Res 22(8):1304–1308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the China Apple Research System (CARS-28) Science and Technology Innovative Engineering Project in the Shaanxi province of China (2015NY114, 2016KTZDNY01-10) and the Yangling Subsidiary Center Project of the National Apple Improvement Center and Collaborative Innovation Center for Shaanxi Fruit Industry Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingyu Han.

Additional information

Jiangping Mao and Dong Zhang have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1698 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, J., Zhang, D., Li, K. et al. Effect of exogenous Brassinolide (BR) application on the morphology, hormone status, and gene expression of developing lateral roots in Malus hupehensis . Plant Growth Regul 82, 391–401 (2017). https://doi.org/10.1007/s10725-017-0264-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-017-0264-5

Keywords

Navigation