Skip to main content
Log in

The SPATULA transcription factor regulates seed oil content by controlling seed specific genes in Arabidopsis thaliana

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Seed oil content, as a key economical trait, is influenced by multiple factors during seed development. Recent studies have established that control of seed development and seed oil content are interrelated process, controlled by transcription factors. Previously, a bHLH transcription factor SPATULA was reported to have pleiotropic effect on various organ development including root, leaf, and siliques but not seed development. Here, our results demonstrated a novel function of SPATULA to regulate seed size and seed fatty acids (FAs) content in Arabidopsis. The loss function of SPATULA significantly increased seed size, reduced seed FAs content. On the contrary, overexpression of SPATULA significantly increased the fatty acid contents without changing seed size. Ultrastructure analysis revealed that modification of seed FAs content by SPATULA was mainly through alteration of aleurone grain in seed embryo cells. Gene expression analyses provide a brief overview on the effects of SPATULA on key genes implicated in seed FAs content. These results demonstrated the SPATULA promotes fatty acid accumulation through inhibition of seed storage protein associate gene and induction of fatty acid associate genes during seed development in Arabidopsis. Our study had further extended the knowledge of SPATULA function, and it can provide new genetic resource for oil crop modification in Brassicaceae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acids

GA:

Gibberellin acids

SPT:

SPATULA

GC:

Gas chromatography

TEM:

Transmission electronic microscopy

FAs:

Fatty acids

ER:

Endoplasmic reticulum

bHLH:

Basic helix-loop-helix

DAP:

Days after pollination

qPCR:

Quantitative polymerase chain reaction

Ct:

Cycle threshold

References

  • Ali I, Liu BH, Farooq MA, Islam F, Azizullah A, Yu CY, Su W, Gan YB (2016) Toxicological effects of bisphenol A on growth and antioxidant defense system in Oryza sativa as revealed by ultrastructure analysis. Ecotoxicol Environ Safe 124:277–284

    Article  CAS  Google Scholar 

  • Alvarez J, Smyth DR (1998) Genetic pathways controlling carpel development in Arabidopsis thaliana. J Plant Res 111:295–298

    Article  CAS  Google Scholar 

  • Alvarez J, Smyth DR (1999) CRABS CLAW and SPATULA, two Arabidopsis genes that control carpel development in parallel with AGAMOUS. Development 126:2377–2386

    CAS  PubMed  Google Scholar 

  • Alvarez J, Smyth DR (2002) CRABS CLAW and SPATULA genes regulate growth and pattern formation during gynoecium development in Arabidopsis thaliana. Int J Plant Sci 163:17–41

    Article  CAS  Google Scholar 

  • Angeles-Nunez JG, Tiessen A (2011) Mutation of the transcription factor LEAFY COTYLEDON 2 alters the chemical composition of Arabidopsis seeds, decreasing oil and protein content, while maintaining high levels of starch and sucrose in mature seeds. J Plant Physiol 168:1891–1900

    Article  CAS  PubMed  Google Scholar 

  • Bao SJ, An LJ, Su S, Zhou ZJ, Gan YB (2011) Expression patterns of nitrate, phosphate, and sulfate transporters in Arabidopsis roots exposed to different nutritional regimes. Botany 89:647–653

    Article  CAS  Google Scholar 

  • Basnet RK, Moreno-Pachon N, Lin K, Bucher J, Visser RGF, Maliepaard C, Bonnema G (2013) Genome-wide analysis of coordinated transcript abundance during seed development in different Brassica rapa morphotypes. BMC Genom 14:1

    Article  Google Scholar 

  • Baud S, Mendoza MS, To A, Harscoet E, Lepiniec L, Dubreucq B (2007) WRINKLED1 specifies the regulatory action of LEAFY COTYLEDON2 towards fatty acid metabolism during seed maturation in Arabidopsis. Plant J 50:825–838

    Article  CAS  PubMed  Google Scholar 

  • Baud S, Dubreucq B, Miquel M, Rochat C, Lepiniec L (2008) Storage reserve accumulation in Arabidopsis: metabolic and developmental control of seed filling. Arabidopsis Book 6:e0113 doi:10.1199/tab.0113

    Article  PubMed  PubMed Central  Google Scholar 

  • Belide S, Petrie JR, Shrestha P, Singh SP (2012) Modification of seed oil composition in Arabidopsis by artificial microRNA-mediated gene silencing. Front Plant Sci 3:168

    Article  PubMed  PubMed Central  Google Scholar 

  • Berger F, Grini PE, Schnittger A (2006) Endosperm: an integrator of seed growth and development. Curr Opin Plant Biol 9:664–670. doi:10.1016/j.pbi.2006.09.015

    Article  CAS  PubMed  Google Scholar 

  • Braybrook SA, Stone SL, Park S, Bui AQ, Le BH, Fischer RL, Goldberg RB, Harada JJ (2006) Genes directly regulated by LEAFY COTYLEDON2 provide insight into the control of embryo maturation and somatic embryogenesis. P Natl Acad Sci USA 103:3468–3473. doi:10.1073/pnas.0511331103

    Article  CAS  Google Scholar 

  • Cernac A, Benning C (2004) WRINKLED1 encodes an AP2/EREB domain protein involved in the control of storage compound biosynthesis in Arabidopsis. Plant J 40:575–585

    Article  CAS  PubMed  Google Scholar 

  • Chaudhury AM, Koltunow A, Payne T, Luo M, Tucker MR, Dennis ES, Peacock WJ (2001) Control of early seed development. Annu Rev Cell Dev Biol 17:677–699. doi:10.1146/annurev.cellbio.17.1.677

    Article  CAS  PubMed  Google Scholar 

  • Chen MX, Du X, Zhu Y, Wang Z, Hua SJ, Li ZL, Guo WL, Zhang GP, Peng JR, Jiang LX (2012a) Seed Fatty Acid Reducer acts downstream of gibberellin signalling pathway to lower seed fatty acid storage in Arabidopsis. Plant Cell Environ 35:2155–2169

  • Chen MX, Wang Z, Zhu YN, Li ZL, Hussain N, Xuan LJ, Guo WL, Zhang GP, Jiang LX (2012b) The effect of TRANSPARENT TESTA2 on seed fatty acid biosynthesis and tolerance to environmental stresses during young seedling establishment in Arabidopsis. Plant Physiol 160:1023–1036

  • Dolan L (2014) Symmetric development: transcriptional regulation of symmetry transition in plants. Curr Biol 24:R1172–R1174. doi:10.1016/j.cub.2014.11.006

    Article  CAS  PubMed  Google Scholar 

  • El Tahchy A, Petrie JR, Shrestha P, Vanhercke T, Singh SP (2015) Expression of mouse MGAT in Arabidopsis results in increased lipid accumulation in seeds. Front Plant Sci 6:1180

    Article  PubMed  PubMed Central  Google Scholar 

  • Ezcurra I, Ellerstrom M, Wycliffe P, Stalberg K, Rask L (1999) Interaction between composite elements in the napA promoter: both the B-box ABA-responsive complex and the RY/G complex are necessary for seed-specific expression. Plant Mol Biol 40:699–709

    Article  CAS  PubMed  Google Scholar 

  • Footitt S, Clay HA, Dent K, Finch-Savage WE (2014) Environment sensing in spring-dispersed seeds of a winter annual Arabidopsis influences the regulation of dormancy to align germination potential with seasonal changes. New Phytol 202:929–939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gremski K, Ditta G, Yanofsky MF (2007) The HECATE genes regulate female reproductive tract development in Arabidopsis thaliana. Development 134:3593–3601

    Article  CAS  PubMed  Google Scholar 

  • Groszmann M, Bylstra Y, Lampugnani ER, Smyth DR (2010) Regulation of tissue-specific expression of SPATULA, a bHLH gene involved in carpel development, seedling germination, and lateral organ growth in Arabidopsis. J Exp Bot 61:1495–1508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Groszmann M, Paicu T, Alvarez JP, Swain SM, Smyth DR (2011) SPATULA and ALCATRAZ, are partially redundant, functionally diverging bHLH genes required for Arabidopsis gynoecium and fruit development. Plant J 68:816–829

    Article  CAS  PubMed  Google Scholar 

  • Gruis D, Selinger DA, Curran JM, Jung R (2002) Redundant proteolytic mechanisms process seed storage proteins in the absence of seed-type members of the vacuolar processing enzyme family of cysteine proteases. Plant Cell 14:2863–2882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gruis DF, Schulze J, Jung R (2004) Storage protein accumulation in the absence of the vacuolar processing enzyme family of cysteine proteases. Plant Cell 16:270–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta PK, Rustgi S, Kumar N (2006) Genetic and molecular basis of grain size and grain number and its relevance to grain productivity in higher plants. Genome 49:565–571. doi:10.1139/g06-063

    Article  PubMed  Google Scholar 

  • Hashmi N, Khan MMA, Moinuddin, Idrees M, Aftab T (2012) Exogenous salicylic acid stimulates physiological and biochemical changes to improve growth, yield and active constituents of fennel essential oil. Plant Growth Regul 68:281–291. doi:10.1007/s10725-012-9716-0

    Article  CAS  Google Scholar 

  • Heisler MGB, Atkinson A, Bylstra YH, Walsh R, Smyth DR (2001) SPATULA, a gene that controls development of carpel margin tissues in Arabidopsis, encodes a bHLH protein. Development 128:1089–1098

    CAS  PubMed  Google Scholar 

  • Ichihashi Y, Horiguchi G, Gleissberg S, Tsukaya H (2010) The bHLH Transcription Factor SPATULA Controls Final Leaf Size in Arabidopsis thaliana. Plant Cell Physiol 51:252–261

    Article  CAS  PubMed  Google Scholar 

  • Jolivet P, Roux E, d’Andrea S, Davanture M, Negroni L, Zivy M, Chardot T (2004) Protein composition of oil bodies in Arabidopsis thaliana ecotype WS. Plant Physiol Biochem 42:501–509

    Article  CAS  PubMed  Google Scholar 

  • Kanai M, Mano S, Kondo M, Hayashi M, Nishimura M (2016) Extension of oil biosynthesis during the mid-phase of seed development enhances oil content in Arabidopsis seeds. Plant Biotechnol J 14:1241–1250. doi:10.1111/pbi.12489

    Article  CAS  PubMed  Google Scholar 

  • Keith K, Kraml M, Dengler NG, Mccourt P (1994) Fusca3—a heterochronic mutation affecting late embryo development in Arabidopsis. Plant Cell 6:589–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S, Yamaoka Y, Ono H, Kim H, Shim D, Maeshima M, Martinoia E, Cahoon EB, Nishida I, Lee Y (2013) AtABCA9 transporter supplies fatty acids for lipid synthesis to the endoplasmic reticulum. P Natl Acad Sci USA 110:773–778

    Article  CAS  Google Scholar 

  • Kozlowski J (1992) Optimal allocation of resources to growth and reproduction—implications for age and size at maturity. Trends Ecol Evol 7:15–19

    Article  CAS  PubMed  Google Scholar 

  • Krebbers E, Herdies L, Declercq A, Seurinck J, Leemans J, Vandamme J, Segura M, Gheysen G, Vanmontagu M, Vandekerckhove J (1988) Determination of the processing sites of an arabidopsis 2S-albumin and characterization of the complete gene family. Plant Physiol 87:859–866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kroj T, Savino G, Valon C, Giraudat J, Parcy F (2003) Regulation of storage protein gene expression in Arabidopsis. Development 130:6065–6073. doi:10.1242/dev.00814

    Article  CAS  PubMed  Google Scholar 

  • Li N, Li YH (2014) Ubiquitin-mediated control of seed size in plants. Front Plant Sci 5:332

    PubMed  PubMed Central  Google Scholar 

  • Li N, Li YH (2015) Maternal control of seed size in plants. J Exp Bot 66:1087–1097. doi:10.1093/jxb/eru549

    Article  CAS  PubMed  Google Scholar 

  • Li ZL, Jiang YX, Hua SJ, Ren Y, Jiang CY, Zhou LH, Chen XY, Jiang LX (2013) Characterization of seed fatty acid accumulation in DELLA mutant lines of Arabidopsis. Plant Growth Regul 70:27–37. doi:10.1007/s10725-012-9775-2

    Article  CAS  Google Scholar 

  • Li Q, Shao JH, Tang SH, Shen QW, Wang TH, Chen WL, Hong YY (2015) Wrinkled1 accelerates flowering and regulates lipid homeostasis between oil accumulation and membrane lipid anabolism in Brassica napus. Front Plant Sci 6

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Mahmood T, Rahman MH, Stringam GR, Yeh F, Good AG (2006) Identification of quantitative trait loci (QTL) for oil and protein contents and their relationships with other seed quality traits in Brassica juncea. Theor Appl Genet 113:1211–1220

    Article  CAS  PubMed  Google Scholar 

  • Makkena S, Lamb RS (2013) The bHLH transcription factor SPATULA regulates root growth by controlling the size of the root meristem. BMC Plant Biol 13:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mou ZL, He YK, Dai Y, Liu XF, Li JY (2000) Deficiency in fatty acid synthase leads to premature cell death and dramatic alterations in plant morphology. Plant Cell 12:405–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moubayidin L, Ostergaard L (2014) Dynamic control of auxin distribution imposes a bilateral-to-radial symmetry switch during gynoecium development. Curr Biol 24:2743–2748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mu JY, Tan HL, Zheng Q, Fu FY, Liang Y, Zhang JA, Yang XH, Wang T, Chong K, Wang XJ, Zuo JR (2008) LEAFY COTYLEDON1 is a key regulator of fatty acid biosynthesis in Arabidopsis. Plant Physiol 148:1042–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nemhauser JL, Feldman LJ, Zambryski PC (2000) Auxin and ETTIN in Arabidopsis gynoecium morphogenesis. Development 127:3877–3888

    CAS  PubMed  Google Scholar 

  • Pang PP, Pruitt RE, Meyerowitz EM (1988) Molecular-cloning, genomic organization, expression and evolution of 12s-Seed storage protein genes of Arabidopsis thaliana. Plant Mol Biol 11:805–820

    Article  CAS  PubMed  Google Scholar 

  • Parcy F, Valon C, Kohara A, Misera S, Giraudat J (1997) The ABSCISIC ACID-INSENSITIVE3, FUSCA3, and LEAFY COTYLEDON1 loci act in concert to control multiple aspects of Arabidopsis seed development. Plant Cell 9:1265–1277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park M, Lee D, Lee GJ, Hwang I (2005) AtRMR1 functions as a cargo receptor for protein trafficking to the protein storage vacuole. J Cell Biol 170:757–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Penfield S, Josse EM, Kannangara R, Gilday AD, Halliday KJ, Graham IA (2005) Cold and light control seed germination through the bHLH transcription factor SPATULA. Curr Biol 15:1998–2006

    Article  CAS  PubMed  Google Scholar 

  • Peng FY, Weselake RJ (2011) Gene coexpression clusters and putative regulatory elements underlying seed storage reserve accumulation in Arabidopsis. BMC Genom 12:1

    Article  Google Scholar 

  • Pidkowich MS, Nguyen HT, Heilmann I, Ischebeck T, Shanklin J (2007) Modulating seed beta-ketoacyl-acyl carrier protein synthase II level converts the composition of a temperate seed oil to that of a palm-like tropical oil. P Natl Acad Sci USA 104:4742–4747

    Article  CAS  Google Scholar 

  • Reidt W, Wohlfarth T, Ellerstrom M, Czihal A, Tewes A, Ezcurra I, Rask L, Baumlein H (2000) Gene regulation during late embryogenesis: the RY motif of maturation-specific gene promoters is a direct target of the FUS3 gene product. Plant J 21:401–408

    Article  CAS  PubMed  Google Scholar 

  • Reymond MC, Brunoud G, Chauvet A, Martinez-Garcia JF, Martin-Magniette ML, Moneger F, Scutt CP (2012) A light-regulated genetic module was recruited to carpel development in Arabidopsis following a structural change to SPATULA. Plant Cell 24:2812–2825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C-T method. Nat Protoc 3:1101–1108

    Article  CAS  PubMed  Google Scholar 

  • Sidaway-Lee K, Josse EM, Brown A, Gan YB, Halliday KJ, Graham IA, Penfield S (2010) SPATULA links daytime temperature and plant growth rate. Curr Biol 20:1493–1497

    Article  CAS  PubMed  Google Scholar 

  • Sreenivasulu N, Wobus U (2013) Seed-development programs: a systems biology-based comparison between dicots and monocots. Annu Rev Plant Biol 64:189. doi:10.1146/annurev-arplant-050312-120215

    Article  CAS  PubMed  Google Scholar 

  • Sun JD, Ke JS, Johnson JL, Nikolau BJ, Wurtele ES (1997) Biochemical and molecular biological characterization of CAC2, the Arabidopsis thaliana gene coding for the biotin carboxylase subunit of the plastidic acetyl-coenzyme A carboxylase. Plant Physiol 115:1371–1383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun XD, Shantharaj D, Kang XJ, Ni M (2010) Transcriptional and hormonal signaling control of Arabidopsis seed development. Curr Opin Plant Biol 13:611–620. doi:10.1016/j.pbi.2010.08.009

    Article  CAS  PubMed  Google Scholar 

  • Thelen JJ, Ohlrogge JB (2002) Both antisense and sense expression of biotin carboxyl carrier protein isoform 2 inactivates the plastid acetyl-coenzyme A carboxylase in Arabidopsis thaliana. Plant J 32:419–431

    Article  CAS  PubMed  Google Scholar 

  • Vaistij FE, Gan YB, Penfield S, Gilday AD, Dave A, He ZS, Josse EM, Choi G, Halliday KJ, Graham IA (2013) Differential control of seed primary dormancy in Arabidopsis ecotypes by the transcription factor SPATULA. P Natl Acad Sci USA 110:10866–10871

    Article  CAS  Google Scholar 

  • Wang WY, Liu BH, Xu MY, Jamil M, Wang GP (2015) ABA-induced CCCH tandem zinc finger protein OsC3H47 decreases ABA sensitivity and promotes drought tolerance in Oryza sativa. Biochem Biophys Res Commun 464:33–37

    Article  CAS  PubMed  Google Scholar 

  • Weselake RJ, Taylor DC, Rahman MH, Shah S, Laroche A, McVetty PBE, Harwood JL (2009) Increasing the flow of carbon into seed oil. Biotechnol Adv 27:866–878. doi:10.1016/j.biotechadv.2009.07.001

    Article  CAS  PubMed  Google Scholar 

  • Zhou ZJ, Sun LL, Zhao YQ, An LJ, Yan A, Meng XF, Gan YB (2013) Zinc Finger Protein 6 (ZFP6) regulates trichome initiation by integrating gibberellin and cytokinin signaling in Arabidopsis thaliana. New Phytol 198:699–708

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded by Major State Basic Research Development Program (973 Program, Grant No. 2015CB150200), the National Key R & D Program of China (Grant No. 2016YFD0100701), Zhejiang Provincial Natural Science Foundation of China (Grant No. LZ15C020001) and National Natural Science Foundation of China (Grant No. 31570183; 31529001; 31370215).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinbo Gan.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Hua, C., Song, G. et al. The SPATULA transcription factor regulates seed oil content by controlling seed specific genes in Arabidopsis thaliana . Plant Growth Regul 82, 111–121 (2017). https://doi.org/10.1007/s10725-016-0243-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-016-0243-2

Keywords

Navigation