High-throughput sequencing-based analysis of the composition and diversity of endophytic bacterial community in seeds of “Beijing” hybrid maize planted in China

Abstract

Maize (Zea mays L.) is the largest food crops in China with the plangting area and total yield of 37.076 million hectares and 215.67 million tons respectively in 2014. The technology of cross breeding was the primary method to cultivate new maize varieties and promote the yield level. In recent years, more and more agriculturalists discovered the existence of endophyte in maize and their close relationship with soil environmental adaption which affect the production of maize. In this study, the seeds of six different maize varieties which were self-developed and cultivated from capital city of China “Beijing” and extensively planted in China were collected, this is the first time to acquire all of the “Beijing” hybrid maize to investigate their endopytes. We clarified eight species exists in all the varieties and the relative abundance of top three species including Pantoea agglomerans, Enterobacter cloacae and Aeribacillus pallidus taken about 60 % of the whole endophyte. Besides these, we also discovered the correlations between the endophytic bacteria which might affect the growth of maize. On the other hand, the distributions of E. cloacae and A. pallidus between maize varieties with different male parent were apparently different. So we deduced the endophyte affect the environmental adaptation of different maize varieties and the results showed the light on the future maize variety cultivation from the angle of endophyte.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Abraham J, Silambarasan S (2015) Plant growth promoting bacteria Enterobacter asburiae JAS5 and Enterobacter cloacae JAS7 in mineralization of endosulfan. Appl Biochem Biotechnol 175(7):3336–3348

    CAS  Article  PubMed  Google Scholar 

  2. Adesemoye AO, Torbert HA, Kloepper JW (2009) Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microb Ecol 58:921–929

    CAS  Article  PubMed  Google Scholar 

  3. Bakker MG, Manter DK, Sheflin AM, Weir TL, Vivanco JM (2012) Harnessing the rhizosphere microbiome through plant breeding and agricultural management. Plant Soil 360:1–13

    CAS  Article  Google Scholar 

  4. Berendsen RL, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17(8):478–486

    CAS  Article  PubMed  Google Scholar 

  5. Berg G (2009) Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. J Appl Microbiol Biotechnol 84:11–18. doi:10.1007/s00253-009-2092-7

    CAS  Article  Google Scholar 

  6. Berg G, Grube M, Schloter M, Smalla K (2014) Unraveling the plant microbiome: looking back and future perspectives. Front Microbiol 5:148

    PubMed  PubMed Central  Google Scholar 

  7. Blaser M, Bork P, Fraser C, Knight R, Wang J (2013) The microbiome explored: recent insights and future challenges. Nat Rev Microbiol 11:213–217. doi:10.1038/nrmicro2973

    CAS  Article  PubMed  Google Scholar 

  8. Bloemberg GV, Lugtenberg BJJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4:343–350

    CAS  Article  PubMed  Google Scholar 

  9. Bonfante P (2010) Plant-fungal interactions in mycorrhizas. In: Encyclopedia of Life Sciences. Wiley, New Jersy

  10. Bulgarelli D, Schlaeppi K, Spaepen S, Ver Loren van Themaat E, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64: 807–838.

    CAS  Article  PubMed  Google Scholar 

  11. Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10(10):996–998

    CAS  Article  PubMed  Google Scholar 

  12. Edwards J, Johnson C, Santos-Medellin C, Lurie E, Podishetty NK, Bhatnagar S, Eisen JA, Sundaresan V (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. Proc Natl Acad Sci USA 112(8):E911–E920

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Ferrara FID, Oliveira ZM, Gonzales HHS, Floh EIS, Barbosa HR (2012) Endophytic and rhizospheric enterobacteria isolated from sugar cane have different potentials for producing plant growth-promoting substances. Plant Soil 353:409–417

    Article  Google Scholar 

  14. Fischer D, Pfitzner B, Schmid M, Simões-Araújo JL, Reis VM, Pereira W, Ormeño-Orrillo E, Hai B, Hofmann A, Schloter M, Martinez-Romero E, Baldani JI, Hartmann A (2012) Molecular characterisation of the diazotrophic bacterial community in uninoculated and inoculated field-grown sugarcane (Saccharum sp.) Plant Soil 356:83–99

    CAS  Article  Google Scholar 

  15. Gond SK, Torres MS, Bergen MS, Helsel Z, White JF Jr (2015) Induction of salt tolerance and up-regulation of aquaporin genes in tropical maize by rhizobacterium Pantoea agglomerans. Lett Appl Microbiol 60(4):392–399

    CAS  Article  PubMed  Google Scholar 

  16. James EK (2000) Nitrogen fixation in endophytic and associative symbiosis. Field Crop Res 65:197–209

    Article  Google Scholar 

  17. James EK, Olivares FL (1998) Infection and colonization of sugar cane and other graminaceous plants by endophytic diazotrophs. Crit Rev Plant Sci 17:77–119

    Article  Google Scholar 

  18. James EK, Gyaneshwar P, Mathan N, Barraquio QL, Reddy PM, Iannetta PPM, Olivares FL, Ladha JK (2002) Infection and colonization of rice seedlings by the plant growth-promoting bacterium Herbaspirillum seropedicae Z67. Mol Plant Microbe Interact 15:894–906

    CAS  Article  PubMed  Google Scholar 

  19. Lebeis SL, Rott M, Dangl JL, Schulze-Lefert P (2012) Culturing a plant microbiome community at the cross-rhodes. New Phytol 196:341–344

    Article  PubMed  Google Scholar 

  20. Liu Y, Zuo S, Xu LW, Zou YY, Song W (2012) Study on diversity of endophytic bacterial communities in seeds of hybrid maize and their parental lines. Arch Microbiol 194:1001–1012

    CAS  Article  PubMed  Google Scholar 

  21. Lugtenberg B, Kamilova F (2009) Plant-growth promoting rhizobacteria. Annu Rev Microbiol 63:541–556. doi:10.1146/annurev.micro.62.081307.162918

    CAS  Article  PubMed  Google Scholar 

  22. Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, Tremblay J, Engelbrektson A, Kunin V, del Rio TG, Edgar RC, Eickhorst T, Ley RE, Hugenholtz P, Tringe SG, Dangl JL (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488(7409):86–90

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Martínez-Rodríguez JC, De la Mora-Amutio M, Plascencia-Correa LA, Audelo-Regalado E, Guardado FR, Hernández-Sánchez E, Peña-Ramírez YJ, Escalante A, Beltrán-García MJ, Ogura T (2015) Cultivable endophytic bacteria from leaf bases of Agave tequilana and their role as plant growth promoters. Braz J Microbiol 45(4):1333–1339

    Article  PubMed Central  Google Scholar 

  24. Mitter B, Petric A, Shin MW, Chain PS, Hauberg-Lotte L, Reinhold-Hurek B (2013) Comparative genome analysis of Burkholderia phytofirmans PsJN reveals a wide spectrum of endophytic lifestyles based on interaction strategies with host plants. Front Plant Sci 4:120. doi:10.3389/fpls.2013.00120

    Article  PubMed  PubMed Central  Google Scholar 

  25. Monteiro RA, Balsanelli E, Wassem R, Marin AM, Brusamarello-Santos LCC, Schmidt MA, Tadra-Sfeir MZ, Pankievicz VCS, Cruz LM, Chubatsu LS, Pedrosa FO, Souza EM (2012) Herbaspirillum-plant interactions: microscopical, histological and molecular aspects. Plant Soil 356:175–196

    CAS  Article  Google Scholar 

  26. Philippot L, Hallin S, Borjesson G, Baggs EM (2009) Biochemical cycling in the rhizosphere having an impact on global change. Plant Soil 321:61–81

    CAS  Article  Google Scholar 

  27. Radha TK, Rao DL (2014) Plant growth promoting bacteria from cow dung based biodynamic preparations. Indian J Microbiol 54(4):413–418

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Reinhold-Hurek B, Hurek T (2011) Living inside plants: bacterial endophytes. Curr Opin Plant Biol 14:435–443. doi:10.1016/j.pbi.2011.04.004

    Article  PubMed  Google Scholar 

  29. Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9. doi:10.1111/j.1574-6968.2007.00918.x

    CAS  Article  PubMed  Google Scholar 

  30. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537–7541

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Sessitsch A, Hardoim P, Doring J, Weilharter A, Krause A, Woyke T, Mitter B, Hauberg-Lotte L, Friedrich F, Rahalkar M, Hurek T, Sarkar A, Bodrossy L, van Overbeek L, Brar D, van Elsas JD, Reinhold-Hurek B (2012) Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Mol Plant Microbe Interact 25:28–36

    CAS  Article  PubMed  Google Scholar 

  32. Singh BK, Bardgett RD, Smith P, Reay DS (2010) Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat Rev Microbiol 8:779–790

    CAS  Article  PubMed  Google Scholar 

  33. Suarez-Moreno ZR, Caballero-Mellado J, Coutinho BG, Mendonca-Previato L, James EK, Venturi V (2012) Common features of environmental and potentially beneficial plant-associated Burkholderia. Microb Ecol 63:249–266

    Article  PubMed  Google Scholar 

  34. Turner TR, James EK, Poole PS (2013) The plant microbiome. Genome Biol 14(6):209

    Article  PubMed  PubMed Central  Google Scholar 

  35. Van Overbeek L, van Doorn J, Wichers J, van Amerongen A, van Roermund H, Willemsen P (2014) The arable ecosystem as battleground for emergence of new human pathogens. Front Microbiol 5:104. doi:10.3389/fmicb.2014.00104.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Beijing Nova Program (No. Z141105001814095), the Beijing Nova Interdisciplinary Cooperational Program (No. Z1511000003150150), the National Natural Science Foundation of China (No. 31300008), the Chinese Postdoctoral Science Foundation (No. 2015M570969), the Project supported by Beijing Postdoctoral Research Foundation, the Fund of National Infrastructure of Microbial Resources (No. NIMR2016-4), and the Scientific and Technological Development Project of China National Research Institute of Food and Fermentation Industries (No. 2012KJFZ-BS-01). We also thank Dr. Zhengqiu Cai at Brigham and Women’s Hospital (USA) for assistance with the English.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Wenkui Dai or Jiuran Zhao or Chi Cheng.

Additional information

Yang Liu, Ronghuan Wang and Yinhu Li have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPT 547 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Wang, R., Li, Y. et al. High-throughput sequencing-based analysis of the composition and diversity of endophytic bacterial community in seeds of “Beijing” hybrid maize planted in China. Plant Growth Regul 81, 317–324 (2017). https://doi.org/10.1007/s10725-016-0208-5

Download citation

Keywords

  • Beijing
  • Maize seed
  • Endophyte
  • Diversity
  • Pantoea agglomerans