Skip to main content
Log in

The Tamarix ferritin gene confers low-iron tolerance in transgenic tobacco

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Ferritin is one of the important proteins that respond to various stresses in Tamarix androssowii. We cloned a full-length cDNA sequence of a ferritin gene from T. androssowii, named “TaFer1” (GenBank accession number: AB275873), and overexpressed it in tobacco to examine its functions. The transgenic tobacco plants were confirmed by both northern and western blots, indicating that the TaFer1 gene was expressed in transgenic tobacco plants. Interestingly, the expression of tobacco endogenous NtFer1 gene increased significantly in accordance with TaFer1 gene. Evidence from bacterial two-hybrid experiments demonstrated that there were strong interactions between different ferritin subunits, which suggested that the subunit of TaFer1 participated in the protein complex of ferritin that usually contains 24 subunits. Under low-iron condition, the transgenic tobacco showed a higher tolerance that is manifested in the significant increases of ferric reductase activity, iron concentration, chlorophyll concentration, plant height, and fresh weight than that of non-transgenic plants. The results of the present study suggested that the characterization of Tamarix ferritin gene and the interactions between exogenous and endogenous ferritins may increase our understanding of the molecular functions of the Tamarix ferritin gene and find a solution to prevent iron deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anderson WB (1982) Diagnosis and correction of iron deficiency in field crops: an overview. J Plant Nutr 5:785–795

    Article  CAS  Google Scholar 

  • Briat JF, Lobréaux S (1997) Iron transport and storage in plants. Trends Plant Sci 2:187–193

    Article  Google Scholar 

  • Briat JF, Lobréaux AM, Laulhére JP, Lescure AM, Labouréaux S, Pesey H, Proudhon D, Wuytswinkel O (1995) Molecular and cellular biology of plant ferritins. In: Abadia J (ed) iron nutrition in soil and plants. Kluwer, Dordrecht, pp 265–276

    Chapter  Google Scholar 

  • Chen Y, Philip B (1982) Iron nutrition of plants in calcareous soils. Adv Agron 135:217–240

    Article  Google Scholar 

  • Connolly EL, Campbell NH, Grotz N, Prichard LC, Guerinot ML (2003) Overexpression of the FRO2 ferric chelate reductase confers tolerance to growth on low iron and uncovers posttranscriptional control. Plant Physiol 133:1102–1110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deák M, Horváth GV, Devletova S, Török K, Sass L, Vass I, Barna B, Király Z, Dudits D (1999) Plants ectopically expressing the iron-binding protein, ferritin, are tolerant to oxidative damage and pathogens. Nat Biotechnol 17(2):192–196

    Article  PubMed  Google Scholar 

  • Engler-Blum G, Meier M, Frank J, Müller GA (1993) Reduction of background problems in nonradioactive Northern and Southern blot analyses enables higher sensitivity than 32P-based hybridizations. Anal Biochem 210:235–244

    Article  CAS  PubMed  Google Scholar 

  • Fang WC, Wang JW, Lin CC, Kao CH (2001) Iron induction of lipid peroxidation and effects on antioxidative enzyme activities in rice leaves. Plant Growth Regul 35(1):75–80

    Article  CAS  Google Scholar 

  • Goto F, Yoshihara T, Saiki H (1998) Iron accumulation in tobacco plants expressing soybean ferritin gene. Transgenic Res 7:173–180

    Article  CAS  Google Scholar 

  • Goto F, Yoshihara T, Shigemoto N, Toki S, Takaiwa F (1999) Iron fortification of rice seed by the soybean ferritin gene. Nat Biotechnol 17(3):282–286

    Article  CAS  PubMed  Google Scholar 

  • Goto F, Yoshihara T, Saiki H (2000) Iron accumulation and enhanced growth in transgenic lettuce plants expressing the iron binding protein ferritin. Theor Appl Genet 100:658–664

    Article  CAS  Google Scholar 

  • Guerinot ML, Yi Y (1994) Iron: nutritious, noxius, and not readily available. Plant Physiol 104(3):815–829

    CAS  PubMed  PubMed Central  Google Scholar 

  • Halliwell B, Gutteridge JMC (1988) Iron as a biological pro-oxidant. ISI Atlas Sci Biochem 1(1):48–52

    CAS  Google Scholar 

  • Harrison PM, Arosio P (1996) The ferritins: molecular properties, iron storage function and cellular regulation. Biochim Biophys Acta 1275:161–203

    Article  PubMed  Google Scholar 

  • Holden MJ, Luster DG, Chaney RL, Buckhout TJ (1992) Enzymology of ferric chelate reduction at the root plasma membrane. J Plant Nutr 15:1667–1678

    Article  CAS  Google Scholar 

  • Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227(4691):1229–1231

    Article  CAS  Google Scholar 

  • Jiang TB (2005) Isolation and expression pattern analysis of two ferritin genes in tobacco. J Integr Plant Biol 47(4):477–486

    Article  CAS  Google Scholar 

  • Jiang TB, Ding BJ, Li FJ, Yang CP (2006) Differential expression of endogenous ferritin genes and iron homeostasis alteration in transgenic tobacco overexpressing soybean ferritin gene. Acta Genet Sin 33(12):1120–1126

    Article  CAS  PubMed  Google Scholar 

  • Kampfenkel K, van Montagu M, Inzé D (1995) Effects of iron excess on Nicotiana plumbaginifolia plants (implications to oxidative stress). Plant Physiol 107(3):725–735

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lescure AM, Proudhon D, Pesey H, Ragland M, Theil EC, Briat JF (1991) Ferritin gene transcription is regulated by iron in soybean cell cultures. Proc Natl Acad Sci USA 88:8222–8226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lobréaux S, Yewdall S, Briat JF, Harrison PM (1992) Amino-acid sequence and predicted three-dimensional structure of pea seed (Pisum sativum) ferritin. Biochem J 288:931–939

    Article  PubMed  PubMed Central  Google Scholar 

  • Molassiotis AN, Diamantidis GC, Therios IN, Tsirakoglou V, Dimassi KN (2005) Oxidative stress, antioxidant activity and Fe(III)-chelate reductase activity of five Prunus rootstocks explants in response to Fe deficiency. Plant Growth Regul 46(1):69–78

    Article  CAS  Google Scholar 

  • Muneer S, Kim TH, Qureshi MI (2012) Fe modulates Cd-induced oxidative stress and the expression of stress responsive proteins in the nodules of Vigna radiata. Plant Growth Regul 68(3):421–433

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nagahara T, Iwao H, Kubo A (1983) The methods of food analysis. Shibada Book Store Press, Tokyo, pp 163–165

    Google Scholar 

  • Petit JM, Van Wuytswinkel O, Briat JF, Lobréaux S (2001) Characterization of an iron-dependent regulatory sequence involved in the transcriptional control of AtFer1 and ZmFer1 plant ferritin genes by iron. J Biol Chem 276:5584–5590

    Article  CAS  PubMed  Google Scholar 

  • Savino G, Briatm JF, Lobréaux S (1997) Inhibition of the iron-induced ZmFer1 maize ferritin gene expression by antioxidants and serine/threonine phosphatase inhibitors. J Biol Chem 272:33319–33326

    Article  CAS  PubMed  Google Scholar 

  • Theil EC (1987) Ferritin: structure, gene, regulation, and cellular function in animals, plants and microorganisms. Annu Rev Biochem 56:289–315

    Article  CAS  PubMed  Google Scholar 

  • Van Wuytswinkel O, Vansuyt G, Grignon N, Fourcroy P, Briat JF (1998) Iron homeostasis alteration in transgenic tabacco overexpressing ferritin. Plant J 17(1):93–97

    Article  Google Scholar 

  • Wang YC, Yang CP, Liu GF, Jiang J, Wu JH (2006) Generation and analysis of expressed sequence tags from a cDNA library of Tamarix androssowii. Plant Sci 170:28–36

    Article  CAS  Google Scholar 

  • Yi Y, Guerinot ML (1996) Genetic evidence that induction of root Fe(III) chelate reductase activity is necessary for iron uptake under iron deficiency. Plant J 10:835–844

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National High-Tech Research and Development Program of China (2013AA102701).

Author contributions

T. Jiang and B. Zhou designed research and wrote the manuscript. W. Yao, B. Zhou, and S. Wang conducted experiments and data analysis, and wrote the manuscript. All authors read and approved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tingbo Jiang.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, W., Wang, S., Zhou, B. et al. The Tamarix ferritin gene confers low-iron tolerance in transgenic tobacco. Plant Growth Regul 80, 149–158 (2016). https://doi.org/10.1007/s10725-016-0151-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-016-0151-5

Keywords

Navigation