Plant growth promoting bacteria confer salt tolerance in Vigna radiata by up-regulating antioxidant defense and biological soil fertility

Abstract

Salinity, a frequently occurring abiotic stress, is a major constraint for crop productivity worldwide. The present study was conducted to evaluate the ability of plant growth promoting rhizobacteria (PGPR) Bacillus cereus Pb25, isolated from soil irrigated with saline water, to promote Vigna radiate (mungbean) growth in the absence and presence of salt stress (9 dS m−1). Results demonstrated that B. cereus promoted V. radiate plant growth significantly even in the presence of salt. Inoculations with PGPR improved the plant growth, and increased the root, shoot fresh and dry biomass and yield as compared to plants with no bacterial treatment (control). Results showed that both chlorophyll content and plant growth were inhibited by saline stress and the salt-induced oxidative damage (measured by MDA, H2O2) was alleviated by PGPR inoculation. Furthermore, PGPR inoculation significantly increased the antioxidant enzymes (POD, SOD and CAT) activities and enhanced the accumulation of proline, potassium, nitrogen and phosphorus as well as decreased sodium accumulation in saline stressed plants. Regarding the soil biological activity, inoculated PGPR enhanced the activity of dehydrogenase, alkaline phosphatase, microbial biomass carbon, available phosphorus and total organic carbon under saline stress as compared to saline treatment alone. These results suggest that B. cereus can be used in salinized agricultural lands as bio-inoculant to increase crop productivity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    CAS  Article  Google Scholar 

  2. Albacete A, Ghanem ME, Martınez-Andujar C, Acosta M, Sanchez-Bravo J, Martınez V, Lutts S, Dodd IC, Perez-Alfocea F (2008) Hormonal changes in relation to biomass partitioning and shoot growth impairment in salinised tomato Solanum lycopersicum L. plants. J Exp Bot 59:4119–4131

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Amos B, Walters D (2006) Maize root biomass and net rhizodeposited carbon. Soil Sci Soc Am J 70:1489–1503

    CAS  Article  Google Scholar 

  4. Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Ashraf M, Harris P (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166:3–16

    CAS  Article  Google Scholar 

  6. Bates L, Waldren R, Teare I (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    CAS  Article  Google Scholar 

  7. Bergstrom D, Monreal C, King D (1998) Sensitivity of soil enzyme activities to conservation practices. Soil Sci Soc Am J 62:1286–1295

    CAS  Article  Google Scholar 

  8. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  Article  PubMed  Google Scholar 

  9. Bremner JM (1965) Total nitrogen. Methods of soil analysis. Part 2. Chemical and microbiological properties (methods of soil), 1149–1178

  10. Cao D, Shi F, Koike T, Lu Z, Sun J (2014) Halophyte plant communities affecting enzyme activity and microbes in saline soils of the yellow river delta in China. Soil Air Water 42:1433–1440

    CAS  Article  Google Scholar 

  11. Chakraborty AP, Dey P, Chakraborty B, Chakraborty U, Roy S (2011) Plant growth promotion and amelioration of salinity stress in crop plants by a salt-tolerant bacterium. Recent Res Sci Technol 3:61–70

    CAS  Google Scholar 

  12. Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959

    Article  Google Scholar 

  13. Demiral T, Türkan İ (2005) Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environ Exp Bot 53:247–257

    CAS  Article  Google Scholar 

  14. Dhindsa RS, Plumb-Dhindsa P, Thorpe TA (1981) Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot 3:101–293

    Google Scholar 

  15. Dodd IC, Perez-Alfocea F (2012) Microbial alleviation of crop salinity. J Exp Bot 63:3415–3428

    CAS  Article  PubMed  Google Scholar 

  16. Dodd J, Burton C, Burns R, Jeffries P (1987) Phosphatase activity associated with the roots and the rhizosphere of plants infected with vesicular-arbuscular mycorrhizal fungi. New Phytol 107:163–172

    CAS  Article  Google Scholar 

  17. Dodd IC, Zinovkina NY, Safronova VI, Belimov A (2010) Rhizobacterial mediation of plant hormone status. Ann Appl Biol 157:361–379

    CAS  Article  Google Scholar 

  18. Eivazi F, Tabatabai MA (1977) Phosphatases in soils. Soil Biol Biochem 9:167–172

    CAS  Article  Google Scholar 

  19. Esechie H, Al-Saidi A, Al-Khanjari S (2002) Effect of sodium chloride salinity on seedling emergence in chickpea. J Agron Crop Sci 188:155–160

    Article  Google Scholar 

  20. Ezawa T, Yoshida T (1994) Characterization of phosphatase in marigold roots infected with vesicular-arbuscular mycorrhizal fungi. Soil Sci Plant Nutr 40:255–264

    CAS  Article  Google Scholar 

  21. FAO (2005) Salt-affected soils from sea water intrusion: Strategies for rehabilitation and management. Report of the regional workshop. Bangkok

  22. Felsenstein J (1993) PHYLIP (Phylogenetic inference package) version 3.5.1. Department of Genetics, University of Washington, Seattle

    Google Scholar 

  23. Garcıa-Gil J, Plaza C, Soler-Rovira P, Polo A (2000) Long-term effects of municipal solid waste compost application on soil enzyme activities and microbial biomass. Soil Biol Biochem 32:1907–1913

    Article  Google Scholar 

  24. Ghassemi F, Jakeman AJ, Nix HA (1995) Salinisation of land and water resources: human causes, extent, management and case studies. CABI Publishing, Wallingford

    Google Scholar 

  25. Glick BR, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase-producing soil bacteria. In: New perspectives and approaches in plant growth-promoting rhizobacteria research. Springer, Berlin, pp 329–339

  26. Gordon SA, Weber RP (1951) Colorimetric estimation of indoleacetic acid. Plant Physiol 26:192

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Gururani M, Upadhyaya C, Baskar V, Venkatesh J, Nookaraju A, Park S (2012) Plant growth-promoting rhizobacteria enhance abiotic stress tolerance in Solanum tuberosum through inducing changes in the expression of ROS-scavenging enzymes and improved photosynthetic performance. J Plant Growth Regul 32:245–258

    Article  Google Scholar 

  28. Hameeda B, Reddy YHK, Rupela O, Kumar G, Reddy G (2006) Effect of carbon substrates on rock phosphate solubilization by bacteria from composts and macrofauna. Curr Microbiol 53:298–302

    CAS  Article  PubMed  Google Scholar 

  29. Holt JG, Krieg NR, Sneath PH, Staley JT, Williams ST (1994) Bergey’s manual of determinative bacteriology, 9th edn. Williams and Wilkins, Baltimore, pp 1–8

    Google Scholar 

  30. Huaidong H, Zhihong Y, Danjing Y, Junlan Y, Xiao L, Zhong T, Yuan M, Cai X, Fang Z, Jing Y (2012) Characterization of endophytic Rahnella sp. JN6 from polygonum pubescens and its potential in promoting growth and Cd, Pb, Zn uptake by Brassica napus. Chemosphere 90:1960–1965

    Google Scholar 

  31. Islam F, Yasmeen T, Ali Q, Ali S, Arif MS, Hussain S, Rizvi H (2014) Influence of Pseudomonas aeruginosa as PGPR on oxidative stress tolerance in wheat under Zn stress. Ecotoxicol Environ Saf 104:285–293

    CAS  Article  PubMed  Google Scholar 

  32. Islam F, Yasmeen T, Ali S, Ali B, Farooq MA, Gill RA (2015) Priming-induced antioxidative responses in two wheat cultivars under saline stress. Acta Physiol Plant 37:1–12

    CAS  Article  Google Scholar 

  33. Jakson M (1967) Soil chemical analysis. Prentice Hall of India Ltd, New Delhi

    Google Scholar 

  34. Jalili F, Khavazi K, Pazira E, Nejati A, Rahmani H, Sadaghiani H, Miransari M (2009) Isolation and characterization of ACC deaminase-producing fluorescent pseudomonads, to alleviate salinity stress on canola (Brassica napus L.) growth. J Plant Physiol 166:667–674

    CAS  Article  PubMed  Google Scholar 

  35. KaviKishor PB, Sangam S, Amrutha RN, Sri Laxmi P, Naidu KR, Rao KRSS, Rao S, Reddy KJ, Theriappan P, Sreenivasulu N (2005) Regulation of proline biosynthesis degradation uptake and transport in higher plants, its implications in plant growth and abiotic stress tolerance. Curr Sci 88:424–438

    Google Scholar 

  36. Kilian M, Steiner U, Krebs B, Junge H, Schmiedeknecht G, Hain R (2000) FZB24® Bacillus subtilis–mode of action of a microbial agent enhancing plant vitality. Pflanzenschutz Nachr Bayer 1(00):1

    Google Scholar 

  37. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    CAS  Article  PubMed  Google Scholar 

  38. Kohler B, Raschke K (2000) The delivery of salts to the xylem three types of anion conductance in the plasmalemma of the xylem parenchyma of roots of barley. Plant Physiol 122:243–254

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Kohler J, Hernández JA, Caravaca F, Roldán A (2008) Plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in water-stressed plants. Funct Plant Biol 35:141–151

    CAS  Article  Google Scholar 

  40. Kohler J, Knapp BA, Waldhuber S, Caravaca F, Roldán A, Insam H (2010) Effects of elevated CO2, water stress, and inoculation with Glomus intraradices or Pseudomonas mendocina on lettuce dry matter and rhizosphere microbial and functional diversity under growth chamber conditions. J Soil Sediment 10:1585–1597

    CAS  Article  Google Scholar 

  41. Kumari S, Vaishnav A, Jain S, Varma A, Choudhary DK (2015) Bacterial-mediated induction of systemic tolerance to salinity with expression of stress Alleviating enzymes in soybean Glycine max L. Merrill. J Plant Growth Regul. doi:10.1007/s00344-015-9490-0

    Google Scholar 

  42. Lau JA, Lennon JT (2011) Evolutionary ecology of plant–microbe interactions: soil microbial structure alters selection on plant traits. New Phytol 192:215–224

    Article  PubMed  Google Scholar 

  43. Maehly PC, Chance M (1954) The assay of catalase and peroxidases. In: Gluck D (ed) Methods of biochemical analysis. Interscience Publishers, New York, pp 357–424

    Google Scholar 

  44. Mantelin S, Touraine B (2004) Plant growth-promoting bacteria and nitrate availability: impacts on root development and nitrate uptake. J Exp Bot 55:27–34

    CAS  Article  PubMed  Google Scholar 

  45. Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Phys Biochem 42:565–572

    CAS  Article  Google Scholar 

  46. Maziah M, Zuraida AR, Halimi MS, Zulkifli HS, Sreeramanan S (2010) Influence of boron on the growth and biochemical changes in plant growth promoting rhizobacteria PGPR inoculated banana plantlets. World J Microbiol Biotechnol 26:933–944

    CAS  Article  Google Scholar 

  47. McLellan T, Marr ES, Wondrack LM, Subashi TA, Aeed PA, Han S, Xu Z, Wang IK, Maguire BA (2009) A systematic study of 50S ribosomal subunit purification enabling robust crystallization. Acta Crystall 65:1270–1282

    CAS  Google Scholar 

  48. Mohammed AHMA (2007) Physiological aspects of mungbean plant (Vigna radiata L. Wilczek) in response to salt stress and gibberellic acid treatment. Res J Agric Biol Sci 3:200–213

    CAS  Google Scholar 

  49. Mortensen RM, Conner DA, Chao S, Geisterfer-Lowrance A, Seidman J (1992) Production of homozygous mutant ES cells with a single targeting construct. Mol Cell Biol 12:2391–2395

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    CAS  Article  PubMed  Google Scholar 

  51. Muntaha A (2012) Characterization of lead resistant bacteria isolated from industrial effluents. Master thesis, Government college university, Faisalabad

  52. Nadeem SM, Zahir ZA, Naveed M, Arshad M (2007) Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity. Can J Microbiol 53:1141–1149

    CAS  Article  PubMed  Google Scholar 

  53. Nautiyal CS, Srivastava S, Chauhan PS, Seem K, Mishra A, Sopory SK (2013) Plant growth-promoting bacteria Bacillus amyloliquefaciens NBRISN13 modulates gene expression profile of leaf and rhizosphere community in rice during salt stress. Plant Physiol Biochem 66:1–9

    CAS  Article  PubMed  Google Scholar 

  54. Nguyen C (2003) Rhizodeposition of organic C by plants: mechanisms and controls. Agronomie 23:375–396

    CAS  Article  Google Scholar 

  55. Noreen Z, Ashraf M, Akram N (2010) Salt-induced regulation of some key antioxidant enzymes and physio-biochemical phenomena in five diverse cultivars of turnip (Brassica rapa L.). J Agro Crop Sci 196:273–285

    CAS  Google Scholar 

  56. Olsen SR, Cole C, Watanabe FS, Dean L (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. US Department of Agriculture, Washington, DC

    Google Scholar 

  57. Patel D, Saraf M (2013) Influence of soil ameliorants and microflora on induction of antioxidant enzymes and growth promotion of Jatropha curcas L. under saline condition. Eur J Soil Biol 55:47–54

    CAS  Article  Google Scholar 

  58. Pepper IL, Gerba CP, Brendecke JW (1995) Environmental microbiology: a laboratory manual. Academic Press Inc., New York

    Google Scholar 

  59. Pérez Rodríguez N, Engström E, Rodushkin I, Nason P, Alakangas L, Öhlander B (2013) Copper and iron isotope fractionation in mine tailings at the Laver and Kristineberg mines, northern Sweden. Appl Geochem 32:204–215

    Article  Google Scholar 

  60. Perrière G, Gouy M (1996) WWW-Query: an on-line retrieval system for biological sequence banks. Biochimie 78:364–369

    Article  PubMed  Google Scholar 

  61. Porcel R, Ruiz-Lozano JM (2004) Arbuascular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. J Exp Bot 55:1743–1750

    CAS  Article  PubMed  Google Scholar 

  62. Qadir M, Quille´rou E, Nangia V, Murtaza G, Singh M, Thomas RJ, Drechsel P, Noble AD (2014) Economics of salt-induced land degradation and restoration. Nat Res Forum. doi:10.1111/1477-8947.12054

    Google Scholar 

  63. Rajkumar M, Ae N, Freitas H (2009) Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere 77:153–160

    CAS  Article  PubMed  Google Scholar 

  64. Ramoliya PJ, Patel HM, Pandey AN (2004) Effect of salinization of soil on growth and macro-and micro-nutrient accumulation in seedlings of Salvadora persica (Salvadoraceae). For Ecol Manag 202:181–193

    Article  Google Scholar 

  65. Reyes I, Valery A, Valduz Z (2007) Phosphate-solubilizing microorganisms isolated from rhizospheric and bulk soils of colonizer plants at an abandoned rock phosphate mine. In: First international meeting on microbial phosphate solubilization. Springer, Berlin, pp 69–75

  66. Rhoades JD, Manteghi NA, Shouse PJ, Alves WJ (1989) Estimating soil salinity from saturated soil-paste electrical conductivity. Soil Sci Soc Am J 53:428–433

    Article  Google Scholar 

  67. Riadh K, Wided M, Hans-Werner K, Chedly A (2010) Responses of halophytes to environmental stresses with special emphasis to salinity. Adv Bot Res 53:117–145

    CAS  Article  Google Scholar 

  68. Rietz D, Haynes R (2003) Effects of irrigation-induced salinity and sodicity on soil microbial activity. Soil Biol Biochem 35:845–854

    CAS  Article  Google Scholar 

  69. Ruan CJ, da Silva JAT, Mopper S, Qin P, Lutts S (2010) Halophyte improvement for a salinized world. Crit Rev Plant Sci 29:329–359

    CAS  Article  Google Scholar 

  70. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  71. Schwyn B, Neilands J (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56

    CAS  Article  PubMed  Google Scholar 

  72. Sheng XF, Juan-Juan X, Chun-Yu J, Lin-Yan H, Qian M (2008) Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environ Pollut 156:1164–1170

    CAS  Article  PubMed  Google Scholar 

  73. Shukla PS, Agarwal PK, Jha B (2012) Improved salinity tolerance of Arachis hypogaea (L.) by the interaction of halotolerant plant-growth-promoting rhizobacteria. JPGR 31:195–206

    CAS  Google Scholar 

  74. Silva CMMDS, Fay EF (2012) Effect of salinity on soil microorganisms. In: Hernandez Soriano MC (ed) Soil health and land use management. INTECH. doi:10.5772/28613

  75. Singh DK, Kumar S (2008) Nitrate reductase arginine deaminase urease and dehydrogenase activities in natural soil ridges with forest. and in cotton soil after acetamiprid treatments. Chemosphere 71:412–418

    CAS  Article  PubMed  Google Scholar 

  76. Sudhir P, Murthy S (2004) Effects of salt stress on basic processes of photosynthesis. Photosynthetica 42:481–486

    CAS  Article  Google Scholar 

  77. Talaat NB, Ghoniem AE, Abdelhamid MT, Shawky BT (2015) Effective microorganisms improve growth performance alter nutrients acquisition and induce compatible solutes accumulation in common bean Phaseolus vulgaris L. plants subjected to salinity stress. Plant Growth Regul 75:281–295

    CAS  Article  Google Scholar 

  78. Taylor G (2002) Populus: arabidopsis for forestry. Do we need a model tree? Ann Bot 90:681–689

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  79. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res 24:4876–4882

    Article  Google Scholar 

  80. Türkan I, Demiral T (2009) Recent developments in understanding salinity tolerance. Environ Exp Bot 67:2–9

    Article  Google Scholar 

  81. Upadhyaya CP, Akula N, Kim HS, Jeon JH, Ho OM, Chun SC, Kim DH, Park SW (2011) Biochemical analysis of enhanced tolerance in transgenic potato plants overexpressing d-galacturonic acid reductase gene in response to various abiotic stresses. Mol Breed 28:105–115

    Article  Google Scholar 

  82. Vance E, Brookes P, Jenkinson D (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707

    CAS  Article  Google Scholar 

  83. Vardharajula S, Ali SA, Grover M, Reddy G, Bandi V (2011) Drought-tolerant plant growth promoting Bacillus spp., effect on growth osmolytes and antioxidant status of maize under drought stress. J Plant Interact 6:1–14

    CAS  Article  Google Scholar 

  84. Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci 151:59–66

    CAS  Article  Google Scholar 

  85. Wahyudi AT, Astuti RP, Widyawati A, Meryandini A, Nawangsih AA (2011) Characterization of Bacillus sp. strains isolated from rhizosphere of soybean plants for their use as potential plant growth for promoting Rhizobacteria. J Microbiol Antimicrob 3:34–60

    Google Scholar 

  86. Walkley A, Black IA (1934) An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci 37:29–38

    CAS  Article  Google Scholar 

  87. Woitke M, Junge H, Schnitzler WH (2004) Bacillus subtilis as growth promotor in hydroponically grown tomatoes under saline conditions. In: VII international symposium on protected cultivation in mild winter climates: production, pest management and global competition, pp 363–369

  88. Yang X, Liang Z, Wen X, Lu C (2008) Genetic engineering of the biosynthesis of glycinebetaine leads to increased tolerance of photosynthesis to salt stress in transgenic tobacco plants. Plant Mol Biol 66:73–86

    CAS  Article  PubMed  Google Scholar 

  89. Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4

    CAS  Article  PubMed  Google Scholar 

  90. Zhang H, Wu X, Li G, Qin P (2011) Interactions between arbuscular mycorrhizal fungi and phosphate-solubilizing fungus (Mortierella sp.) and their effects on Kostelelzkya virginica growth and enzyme activities of rhizosphere and bulk soils at different salinities. Biol Fertil Soils 47:543–554

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Special Fund for Agro-Scientific Research in the Public Interest (201303022), National High Technology Research and Development Program of China (2011AA10A206, 2013AA103007), the National Natural Science Foundation of China (31170405), and Jiangsu Collaborative Innovation Center for Modern Crop Production.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Tahira Yasmeen or Weijun Zhou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Islam, F., Yasmeen, T., Arif, M.S. et al. Plant growth promoting bacteria confer salt tolerance in Vigna radiata by up-regulating antioxidant defense and biological soil fertility. Plant Growth Regul 80, 23–36 (2016). https://doi.org/10.1007/s10725-015-0142-y

Download citation

Keywords

  • Alkaline phosphatase
  • Bacillus cereus Pb25
  • NaCl
  • Dehydrogenase
  • Mungbean (Vigna radiata (L.) Wilczek)
  • Yield