Abstract
The growth and morphophysiological responses of wild watermelon (C. lanatus var. citroide) M20 and Chinese domesticated watermelon (C. lanatus var. lanatus) Y34 to drought stress and subsequent re-watering were compared. Wild watermelon is drought-tolerant, whereas the domesticated watermelon is susceptible. Irrigation was withheld from seedlings for 10 days and the seedlings were then allowed to recover for 1 day. Drought treatment resulted in the wilting and yellowing of leaves in both genotypes, but symptoms occurred earlier and more visibly in Y34. Drought stress inhibited the growth of both genotypes but increased the root/shoot ratio more pronouncedly in M20 than in Y34. Under drought conditions, M20 maintained a higher leaf water status than Y34 due to its denser trichomes and more sensitive stomatal control, which minimized the transpiration rate. Y34 was more vulnerable to drought, resulting in larger decreases in photosystem II efficiency, initial Rubisco activity and chlorophyll concentration. H2O2, O2 −, and MDA contents were significantly increased in both genotypes; however, these increases were smaller in M20, possibly due to a greater enhancement of antioxidant enzyme activities and related-gene expression levels. Moreover, M20 accumulated soluble sugars and proline to greater levels to counter reduced soil moisture. These adaptive mechanisms enabled M20 to recover more rapidly after re-watering. Our findings provide guidance for improving the drought tolerance of Chinese watermelon cultivars.
This is a preview of subscription content, access via your institution.






Abbreviations
- P n :
-
Photosynthetic rate
- RWC:
-
Relative water content
- SWA:
-
Soil water availability
- C i :
-
Intercellular CO2 concentration
- T r :
-
Transpiration rate
- G s :
-
Stomatal conductance
- qP:
-
Photochemical quenching
- NPQ:
-
Nonphotochemical quenching
- F v/F m :
-
Maximum photochemical efficiency of PSII
- ΦPSII:
-
Actual photochemical efficiency of PSII
- ETR:
-
Electron transport rate
- H2O2 :
-
Hydrogen peroxide
- O2 − :
-
Superoxide anion radical
- MDA:
-
Malondialdehyde
- SOD:
-
Superoxide dismustase
- CAT:
-
Catalase
- APX:
-
Ascorbate peroxidase
- GR:
-
Glutathione reductase
- AsA:
-
Ascorbate
- DHA:
-
Dehydroascorbate
- GSH:
-
Glutathione
- GSSG:
-
Oxidized glutathione
- PAO:
-
Pheide a oxygenase
- PPH:
-
Pheophytin pheophorbide hydrolase
References
Bai T, Li C, Ma F, Feng F, Shu H (2010) Responses of growth and antioxidant system to root-zone hypoxia stress in two Malus species. Plant Soil 327(1–2):95–105. doi:10.1007/s11104-009-0034-x
Barrs H, Weatherley P (1962) A re-examination of the relative turgidity technique for estimating water deficits in leaves. Aust J Biol Sci 15(3):413–428
Boaretto LF, Carvalho G, Borgo L, Creste S, Landell MG, Mazzafera P, Azevedo RA (2014) Water stress reveals differential antioxidant responses of tolerant and non-tolerant sugarcane genotypes. Plant Physiol Biochem 74:165–175
Bray EA (1997) Plant responses to water deficit. Trends Plant Sci 2(2):48–54. doi:10.1016/s1360-1385(97)82562-9
de Souza TC, Magalhães PC, de Castro EM, Carneiro NP, Padilha FA, Júnior CCG (2014) ABA application to maize hybrids contrasting for drought tolerance: changes in water parameters and in antioxidant enzyme activity. Plant Growth Regul 73(3):205–217
Diaz-Lopez L, Gimeno V, Simon I, Martinez V, Rodriguez-Ortega WM, Garcia-Sanchez F (2012) Jatropha curcas seedlings show a water conservation strategy under drought conditions based on decreasing leaf growth and stomatal conductance. Agric Water Manag 105:48–56. doi:10.1016/j.agwat.2012.01.001
Du K, Xu L, Wu H, Tu B, Zheng B (2012) Ecophysiological and morphological adaption to soil flooding of two poplar clones differing in flood-tolerance. Flora 207(2):96–106
FAO of the United Nations (2015) Food and agricultural commodities production. FAO of the United Nations. http://faostat3.fao.org/download/Q/QC/E.2013
Flexas J, Barón M, Bota J, Ducruet J-M, Gallé A, Galmés J, Jiménez M, Pou A, Ribas-Carbó M, Sajnani C (2009) Photosynthesis limitations during water stress acclimation and recovery in the drought-adapted Vitis hybrid Richter-110 (V. berlandieri × V. rupestris). J Exp Bot 60(8):2361–2377
Gao J (2000) Experimental techniques of plant physiology. World Publishing Corporation, Xi’an
Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930
Guerfel M, Baccouri O, Boujnah D, Chaibi W, Zarrouk M (2009) Impacts of water stress on gas exchange, water relations, chlorophyll content and leaf structure in the two main Tunisian olive (Olea europaea L.) cultivars. Sci Hortic (Amsterdam) 119(3):257–263. doi:10.1016/j.scienta.2008.08.006
Guo W, Chen R, Gong Z, Yin Y, Ahmedand S, He Y (2012) Exogenous abscisic acid increases antioxidant enzymes and related gene expression in pepper (Capsicum annuum) leaves subjected to chilling stress. Genet Mol Res 11(4):4063–4080
Hörtensteiner S, Kräutler B (2011) Chlorophyll breakdown in higher plants. BBA Bioenergetics 1807(8):977–988
Hu LX, Wang ZL, Huang BR (2010) Diffusion limitations and metabolic factors associated with inhibition and recovery of photosynthesis from drought stress in a C-3 perennial grass species. Physiol Plant 139(1):93–106. doi:10.1111/j.1399-3054.2010.01350.x
Hunsche M, Bürling K, Saied AS, Schmitz-Eiberger M, Sohail M, Gebauer J, Noga G, Buerkert A (2010) Effects of NaCl on surface properties, chlorophyll fluorescence and light remission, and cellular compounds of Grewia tenax (Forssk.) Fiori and Tamarindus indica L. leaves. Plant Growth Regul 61(3):253–263 (211)
Jaleel CA, Manivannan P, Wahid A, Farooq M, Al-Juburi HJ, Somasundaram R, Panneerselvam R (2009) Drought stress in plants: a review on morphological characteristics and pigments composition. Int J Agric Biol 11(1):100–105
Kawasaki S, Miyake C, Kohchi T, Fujii S, Uchida M, Yokota A (2000) Responses of wild watermelon to drought stress: accumulation of an ArgE homologue and citrulline in leaves during water deficits. Plant Cell Physiol 41(7):864–873
Kong Q, Yuan J, Gao L, Zhao S, Jiang W, Huang Y, Bie Z (2014) Identification of suitable reference genes for gene expression normalization in qRT-PCR analysis in watermelon. PLoS One 9(2):e90612
Li J, Besseau S, Törönen P, Sipari N, Kollist H, Holm L, Palva ET (2013) Defense-related transcription factors WRKY70 and WRKY54 modulate osmotic stress tolerance by regulating stomatal aperture in Arabidopsis. New Phytol 200(2):457–472
Lichtenthaler HK, Wellburn AR (1983) Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans 11:591–592
Liu B, Li M, Cheng L, Liang D, Zou Y, Ma F (2012) Influence of rootstock on antioxidant system in leaves and roots of young apple trees in response to drought stress. Plant Growth Regul 67(3):247–256
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25(4):402–408
Logan BA, Grace SC, Adams WW III, Demmig-Adams B (1998) Seasonal differences in xanthophyll cycle characteristics and antioxidants in Mahonia repens growing in different light environments. Oecologia 116(1–2):9–17
Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51(345):659–668. doi:10.1093/jexbot/51.345.659
Moustakas M, Sperdouli I, Kouna T, Antonopoulou C-I, Therios I (2011) Exogenous proline induces soluble sugar accumulation and alleviates drought stress effects on photosystem II functioning of Arabidopsis thaliana leaves. Plant Growth Regul 65(2):315–325. doi:10.1007/s10725-011-9604-z
Posch S, Bennett LT (2009) Photosynthesis, photochemistry and antioxidative defence in response to two drought severities and with re-watering in Allocasuarina luehmannii. Plant Biol 11:83–93. doi:10.1111/j.1438-8677.2009.00245.x
Ramachandra Reddy A, Chaitanya KV, Vivekanandan M (2004) Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161(11):1189–1202
Sanda S, Yoshida K, Kuwano M, Kawamura T, Munekage YN, Akashi K, Yokota A (2011) Responses of the photosynthetic electron transport system to excess light energy caused by water deficit in wild watermelon. Physiol Plant 142(3):247–264
Sapeta H, Miguel Costa J, Lourenco T, Maroco J, van der Linde P, Margarida Oliveira M (2013) Drought stress response in Jatropha curcas: growth and physiology. Environ Exp Bot 85:76–84. doi:10.1016/j.envexpbot.2012.08.012
Seo PJ, Xiang F, Qiao M, Park JY, Lee YN, Kim SG, Lee YH, Park WJ, Park CM (2009) The MYB96 transcription factor mediates abscisic acid signaling during drought stress response in Arabidopsis. Plant Physiol 151(1):275–289
Sharma P, Dubey R (2005) Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings. Plant Growth Regul 46(3):209–221. doi:10.1007/s10725-005-0002-2
Sheng M, Tang M, Chen H, Yang B, Zhang F, Huang Y (2008) Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 18(6–7):287–296. doi:10.1007/s00572-008-0180-7
Si Y, Zhang C, Meng S, Dane F (2009) Gene expression changes in response to drought stress in Citrullus colocynthis. Plant Cell Rep 28(6):997–1009. doi:10.1007/s00299-009-0703-5
Sun J, Gu J, Zeng J, Han S, Song A, Chen F, Fang W, Jiang J, Chen S (2013) Changes in leaf morphology, antioxidant activity and photosynthesis capacity in two different drought-tolerant cultivars of chrysanthemum during and after water stress. Sci Hortic (Amsterdam) 161:249–258. doi:10.1016/j.scienta.2013.07.015
Talbi S, Romero-Puertas MC, Hernandez A, Terron L, Ferchichi A, Sandalio LM (2015) Drought tolerance in a Saharian plant Oudneya africana: role of antioxidant defences. Environ Exp Bot 111:114–126. doi:10.1016/j.envexpbot.2014.11.004
Wang S, Liang D, Li C, Hao Y, Ma F, Shu H (2012) Influence of drought stress on the cellular ultrastructure and antioxidant system in leaves of drought-tolerant and drought-sensitive apple rootstocks. Plant Physiol Biochem 51:81–89. doi:10.1016/j.plaphy.2011.10.014
Wu S, Liang D, Ma F (2014) Leaf micromorphology and sugar may contribute to differences in drought tolerance for two apple cultivars. Plant Physiol Biochem 80:249–258
Zhang H, Gong G, Guo S, Ren Y, Xu Y, Ling K-S (2011) Screening the USDA watermelon germplasm collection for drought tolerance at the seedling stage. HortScience 46(9):1245–1248
Zhang L, Zhang L, Sun J, Zhang Z, Ren H, Sui X (2013) Rubisco gene expression and photosynthetic characteristics of cucumber seedlings in response to water deficit. Sci Hortic (Amsterdam) 161:81–87. doi:10.1016/j.scienta.2013.06.029
Zhang M, Jin ZQ, Zhao J, Zhang G, Wu F (2015) Physiological and biochemical responses to drought stress in cultivated and Tibetan wild barley. Plant Growth Regul 75(2):567–574
Acknowledgments
This study was supported by the Modern Agro-industry Technology Research System of China (CARS-26-18), and Shaanxi Provincial Science and Technology Research and Development Project Fund, China (No. 2015NY091). The authors are grateful to Joshua M. and Mike F. for help in revising the use of English.
Author information
Authors and Affiliations
Corresponding author
Additional information
Yanling Mo and Ruiping Yang have contributed equally to this article.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Mo, Y., Yang, R., Liu, L. et al. Growth, photosynthesis and adaptive responses of wild and domesticated watermelon genotypes to drought stress and subsequent re-watering. Plant Growth Regul 79, 229–241 (2016). https://doi.org/10.1007/s10725-015-0128-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10725-015-0128-9
Keywords
- Watermelon
- Drought stress
- Re-watering
- Photosynthesis
- Antioxidant response
- Osmotic adjustment