Skip to main content
Log in

Accumulation of the azelaic acid-induced protein AZI1 affects lignin synthesis and deposition in Arabidopsis thaliana

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

AZI1 (AZELAIC ACID INDUCED 1) of Arabidopsis thaliana encodes a 16.76 kDa protein with multiple functions, including resistances to low temperature and fungal infection. In the present work, the influences of AZI1 on lignin biosynthesis were investigated with overexpressing, T-DNA knockout and RNA interference lines. Western blotting coupled with immunolocalization exhibited that AZI1 and its paralog EARLI1 were expressed mainly in vascular tissues of inflorescence stems and leaves, but not in roots. Biochemical analyses and microscopic observation showed that knockdown and knockout of AZI1 led to decrease of the lignin content, reduction of the thickness of secondary wall, deformation of xylem cells and increase of the degradability by cellulase. In contrast to this, overexpression of AZI1 resulted in thicker cell wall and enhanced deposition of lignin in the lignified tissues. In comparison to wild-type plants and AZI1 overexpressing lines, the secondary wall of interfascicular fibers and xylem cells in AZI1 mutants showed yellowish-brown coloration after staining with Maüle reagent, indicating the deposition of syringyl unit in lignin was reduced and the ratio of guaiacyl/syringyl monolignol units was increased when AZI1 was disrupted. RT-PCR analyses revealed that the transcription of CCR1 and CCOAOMT1, two genes associated with lignin synthesis, were repressed in T-DNA knockout lines. It has been shown that AZI1 probably modulates production and/or translocation of a long-distance signal during systemic acquired resistance. Our results suggested that AZI1 might be involved in regulation of lignin biosynthesis by influencing the expression of cinnamoyl-CoA reductase and caffeoyl-CoA O-methyltransferase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ali MB, Howard S, Chen S, Wang Y, Yu O, Kovacs LG, Qiu W (2011) Berry skin development in Norton grape: distinct patterns of transcriptional regulation and flavonoid biosynthesis. BMC Plant Biol 11:7

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, Weigel D, Carter DE, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby WL, Berry CC, Ecker JR (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657

    Article  PubMed  Google Scholar 

  • Bhargava A, Mansfield SD, Hall HC, Douglas CJ, Ellis BE (2010) MYB75 functions in regulation of secondary cell wall formation in the Arabidopsis inflorescence stem. Plant Physiol 154:1428–1438

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bjurhager I, Olsson A-M, Zhang B, Gerber L, Kumar M, Berglund LA, Burgert I, Sundberg B, Salmén L (2010) Ultrastructure and mechanical properties of Populus wood with reduced lignin content caused by transgenic down-regulation of cinnamate 4-hydroxylase. Biomacromolecules 11:2359–2365

    Article  CAS  PubMed  Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546

    Article  CAS  PubMed  Google Scholar 

  • Bosch M, Mayer CD, Cookson A, Donnison IS (2011) Identification of genes involved in cell wall biogenesis in grasses by differential gene expression profiling of elongating and non-elongating maize internodes. J Exp Bot 62:3545–3561

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brown DM, Zeef LA, Ellis J, Goodacre R, Turner SR (2005) Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverses genetics. Plant Cell 17:2281–2295

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brunaud V, Balzergue S, Dubreucq B, Aubourg S, Samson F, Chauvin S, Bechtold N, Cruaud C, DeRose R, Pelletier G, Lepiniec L, Caboche M, Lecharny A (2002) T-DNA integration into the Arabidopsis genome depends on sequences of pre-insertion sites. EMBO Rep 3:1152–1157

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Coleman HD, Park JY, Nair R, Chapple C, Mansfield SD (2008) RNAi-mediated suppression of p-coumaroyl-CoA 3′-hydroxylase in hybrid poplar impacts lignin deposition and soluble secondary metabolism. Proc Natl Acad Sci USA 105:4501–4506

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dauwe R, Morreel K, Goeminne G, Gielen B, Rohde A, Van Beeumen J, Ralph J, Boudet AM, Kopka J, Rochange SF, Halpin C, Messens E, Boerjan W (2007) Molecular phenotyping of lignin-modified tobacco reveals associated changes in cell-wall metabolism, primary metabolism, stress metabolism and photorespiration. Plant J 52:263–285

    Article  CAS  PubMed  Google Scholar 

  • DeBono A, Yeats TH, Rose JKC, Bird D, Jetter R, Kunst L, Samuels L (2009) Arabidopsis LTPG is a glycosylphosphatidylinositol-anchored lipid transfer protein required for export of lipids to the plant surface. Plant Cell 21:1230–1238

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dence CW (1992) The determination of lignin. In: Lin SY, Dence CW (eds) Methods in lignin chemistry. Springer, Berlin, pp 33–61

    Chapter  Google Scholar 

  • Ďurkovič J, Kaňuchovă A, Kačik F, Solár R, Lengyelovă A (2012) Genotype- and age-dependent patterns of lignin and cellulose in regenerants derived from 80-year-old trees of black mulberry (Morus nigra L.). Plant Cell Tiss Organ Cult 108:359–370

    Article  Google Scholar 

  • Fratzl P, Burgert I, Gupta HS (2004) On the role of interface polymers for the mechanics of natural polymeric composites. Phys Chem Chem Phys 6:5575–5579

    Article  CAS  Google Scholar 

  • Goujon T, Sibout R, Eudes A, MacKay J, Jouanin L (2003) Genes involved in the biosynthesis of lignin precursors in Arabidopsis thaliana. Plant Physiol Biochem 41:677–687

    Article  CAS  Google Scholar 

  • Grabber JH, Ralph J, Hatfield RD (1998) Ferulate cross-links limit the enzymatic degradation of synthetically lignified primary walls of maize. J Agric Food Chem 46:2609–2614

    Article  CAS  Google Scholar 

  • Grabber JH, Ralph J, Lapierre C, Barrière Y (2004) Genetic and molecular basis of grass cell-wall degradability. I. Lignin–cell wall matrix interactions. C R Biol 327:455–465

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann L, Besseau S, Geoffroy P, Ritzenthaler C, Meyer D, Lapierre C, Pollet B, Legrand M (2004) Silencing of hydroxycinnamoyl-coenzyme A shikimate/quinate hydroxycinnamoyltransferase affects phenylpropanoid biosynthesis. Plant Cell 16:1446–1465

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231

    Article  CAS  Google Scholar 

  • Huang GT, Ma SL, Bai LP, Zhang L, Ma H, Jia P, Liu J, Zhong M, Guo ZF (2012) Sigal transduction during cold, salt, and drought stresses in plants. Mol Biol Rep 39:969–987

    Article  PubMed  Google Scholar 

  • Huis R, Morreel K, Fliniaux O, Lucau-Danila A, Fénart S, Grec S, Neutelings G, Chabbert B, Mesnard F, Boerjan W, Hawkins S (2012) Natural hypolignification is associated with extensive oligolignol accumulation in flax stems. Plant Physiol 158:1893–1915

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jung HW, Tschaplinski TJ, Wang L, Glazebrook J, Greenberg JT (2009) Priming in systemic plant immunity. Science 324:89–91

    Article  PubMed  Google Scholar 

  • Kubo M, Udagawa M, Nishikubo N, Horiguchi G, Yamaguchi M, Ito J, Mimura T, Fukuda H, Demura T (2005) Transcription switches for protoxylem and metaxylem vessel formation. Genes Dev 19:1855–1860

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lauvergeat V, Lacomme C, Lacombe E, Lasserre E, Roby D, Grima-Pettenati J (2001) Two cinnamoyl-CoA reductase (CCR) genes from Arabidopsis thaliana are differentially expressed during development and in response to infection with pathogenic bacteria. Phytochem 57:1187–1195

    Article  CAS  Google Scholar 

  • Li X, Wu HX, Dillon SK, Southerton SG (2009) Generation and analysis of expressed sequence tags from six developing xylem libraries in Pinus radiata D. Don. BMC Genomics 10:41

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Menden B, Kohlhoff M, Moerschbacher BM (2007) Wheat cells accumulate a syringyl-rich lignin during the hypersensitive resistance response. Phytochem 68:513–520

    Article  CAS  Google Scholar 

  • Moura JCMS, Bonine CAV, de Oliveira Fernandes Viana J, Dornelas MC, Mazzafera P (2010) Abiotic and biotic stresses and changes in the lignin content and composition in plants. J Integr Plant Biol 52:360–376

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nieuwland J, Feron R, Huisman BAH, Fasolino A, Hilbers CW, Derksen J, Mariani C (2005) Lipid transfer proteins enhance cell wall extension in tobacco. Plant Cell 17:2009–2019

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Piquemal J, Lapierre C, Myton K, O’Connell A, Schuch W, Grima-Pettenati J, Boudet AM (1998) Down-regulation of Cinnamoyl-CoA Reductase induces significant changes of lignin profiles in transgenic tobacco plants. Plant J 13:71–83

    Article  CAS  Google Scholar 

  • Rexen B (1977) Enzyme solubility: A method for evaluating the digestibility of alkali-treated straw. Anim Feed Sci Tech 2:205–218

    Article  CAS  Google Scholar 

  • Shi Y, Zhang X, Xu ZY, Li L, Zhang C, Schläppi M, Xu ZQ (2011) Influence of EARLI1-like genes on flowering time and lignin synthesis of Arabidopsis thaliana. Plant Biol 13:731–739

    Article  CAS  PubMed  Google Scholar 

  • Sibout R, Eudes A, Mouille G, Pollet B, Lapierre C, Jouanin L, Séguin A (2005) CINNAMYL ALCOHOL DEHYDROGENASE-C and -D are the primary genes involved in lignin biosynthesis in the floral stem of Arabidopsis. Plant Cell 17:2059–2076

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Soylu S (2006) Accumulation of cell-wall bound phenolic compounds and phytoalexin in Arabidopsis thaliana leaves following inoculation with pathovars of Pseudomonas syringae. Plant Sci 170:942–952

    Article  CAS  Google Scholar 

  • Wang LF, Cheng YC (2011) Determination the content of cellulose by nitric acid-ethanol method (in Chinese). Chem Res 22(4):52–55

    Google Scholar 

  • Weng JK, Akiyama T, Bonawitz ND, Li X, Ralph J, Chapple C (2010) Convergent evolution of syringyl lignin biosynthesis via distinct pathways in the lycophyte Selaginella and flowering plants. Plant Cell 22:1033–1045

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xu ZY, Zhang X, Schläppi M, Xu ZQ (2011) Cold-inducible expression of AZI1 and its function in improvement of freezing tolerance of Arabidopsis thaliana and Saccharomyces cerevisiae. J Plant Physiol 168:1576–1587

    Article  CAS  PubMed  Google Scholar 

  • Ye ZH, Varner JE (1993) Gene expression patterns associated with in vitro tracheary element formation in isolated single mesophyll cells of Zinnia elegans. Plant Physiol 103:805–813

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yu K, Soares JM, Mandal MK, Wang C, Chanda B, Gifford AN, Fowler JS, Navarre D, Kachroo A, Kachroo P (2013) A feedback regulatory loop between G3P and lipid transfer proteins DIR1 and AZI1 mediates azelaic-acid-induced systemic immunity. Cell Rep 3:1266–1278

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Schläppi M (2007) Cold responsive EARLI1 type HyPRPs improve freezing survival of yeast cells and form higher order complexes in plants. Planta 227:233–243

    Article  CAS  PubMed  Google Scholar 

  • Zhong R, Morrison WH III, Himmelsbach DS, Poole FL II, Ye ZH (2000) Essential role of caffeoyl coenzyme A O-methyltransferase in lignin biosynthesis in woody poplar plants. Plant Physiol 124:563–577

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhong R, Kays SJ, Schroeder BP, Ye ZH (2002) Mutation of a chitinase-like gene causes ectopic deposition of lignin, aberrant cell shapes, and overproduction of ethylene. Plant Cell 14:165–179

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhong R, Demura T, Ye ZH (2006) SND1, a NAC domain transcription factor, is a key regulator of secondary wall synthesis in fibers of Arabidopsis. Plant Cell 18:3158–3170

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhong R, Lee C, Zhou J, McCarthy RL, Ye ZH (2008) A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis. Plant Cell 20:2763–2782

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zottich U, Da Cunha M, Carvalho AO, Dias GB, Silva NCM, Santos IS, do Nacimento VV, Miguel EC, Machado OLT, Gomes VM (2011) Purification, biochemical characterization and antifungal activity of a new lipid transfer protein (LTP) from Coffea canephora seeds with α-amylase inhibitor properties. BBA-Gen Subjects 1810:375–383

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Michael Schläppi, Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA, for providing seeds of AZI1 overexpressing lines in Col-0 background, EARLI1 RNA interference line in Col-FRI-SF2 background and rabbit anti-EARLI1 antibody. This work was supported by the National Natural Science Foundation of China (30870194, J1210063), the Research Project of Provincial Key Laboratory of Shaanxi (12JS103, 2010JS090) and Graduate Research Project of Northwest University (YZZ13068).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zi-Qin Xu.

Additional information

Hang Gao and Xiao-Yan Wang have contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, H., Wang, XY., Han, YY. et al. Accumulation of the azelaic acid-induced protein AZI1 affects lignin synthesis and deposition in Arabidopsis thaliana . Plant Growth Regul 75, 317–330 (2015). https://doi.org/10.1007/s10725-014-9955-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-014-9955-3

Keywords

Navigation