Skip to main content
Log in

Chitosan enhances rice seedling growth via gene expression network between nucleus and chloroplast

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Chitosan, a partially deacetylated form of the natural and biodegradable biopolymer chitin, has been used as plant growth promoter in agriculture. The aim of this work was to investigate the growth promoting responses induced by chitosan at the physiological and molecular level in rice (Oryza sativa L.) seedlings. The combination of the degree of deacetylation (DD), molecular weight and concentration of chitosan had differing effects on the rice seedling growth. For the best enhancement, oligomeric chitosan with an 80 % DD applied at 40 mg/L significantly enhanced the vegetative growth, in terms of the leaf and root fresh weights and dry weights of rice seedlings compared to the control. At the proteomics level, of the 352 rice leaf proteins that could be resolved using the Multi Experiment Viewer software, 105 showed a significantly different expression level in rice leaves treated with chitosan compared to the control. Co-expression network analysis revealed nine of these proteins had significant coexpression with other genes from the three main biochemical network systems of photosynthesis, carbohydrate metabolism and cell redox homeostasis. More than 90 % of the genes positively co-expressed with these nine chitosan-responsive proteins were localized in chloroplasts, suggesting that chitosan enhanced the plant growth of rice seedlings via multiple and complex networks between the nucleus and chloroplast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdelbasset EH, Lorne RA, Ismail EH, Fouad D (2010) Chitosan in plant protection. Mar Drugs 8(4):968–987

    Article  Google Scholar 

  • Abere B, Wikan N, Ubol S, Auewarakul P, Paemanee A, Kittisenachai S, Roytrakul S, Smith DR (2012) Proteomic analysis of Chikungunya virus infected microgial cells. PLoS One 7(4):e34800

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Arlorio M, Ludwig A, Boller T, Bonfante P (1992) Inhibition of fungal growth by plant chitinases and β-1, 3-glucanases. Protoplasma 171(1–2):34–43

    Article  CAS  Google Scholar 

  • Austin PR, Brine CJ, Castle JE, Zikakis JP (1981) Chitin: new facets of research. Science 212(4496):749–753

    Article  CAS  PubMed  Google Scholar 

  • Bhaskara Reddy M, Arul J, Angers P, Couture L (1999) Chitosan treatment of wheat seeds induces resistance to Fusarium graminearum and improves seed quality. J Agric Food Chem 47(3):1208–1216

    Article  CAS  PubMed  Google Scholar 

  • Boonlertnirun S, Boonraung C, Suvanasara R (2008) Application of chitosan in rice production. J Met Mater Mine 18(2):47–52

    CAS  Google Scholar 

  • Cao P, Jung K-H, Choi D, Hwang D, Zhu J, Ronald PC (2012) The rice oligonucleotide array database: an atlas of rice gene expression. Rice 5(1):1–9

    Article  Google Scholar 

  • Chow W, Anderson J, Melis A (1990) The photosystem stoichiometry in thylakoids of some Australian shade-adapted plant species. Funct Plant Biol 17(6):665–674

    CAS  Google Scholar 

  • Dale M, Causton D (1992) Use of the chlorophyll a/b ratio as a bioassay for the light environment of a plant. Funct Ecol 6(2):190–196

    Article  Google Scholar 

  • Delmotte N, Lasaosa M, Tholey A, Heinzle E, van Dorsselaer A, Huber CG (2009) Repeatability of peptide identifications in shotgun proteome analysis employing off-line two-dimensional chromatographic separations and ion-trap MS. J Sep Sci 32(8):1156–1164

    Article  CAS  PubMed  Google Scholar 

  • Dzung N (2010) Enhancing crop production with chitosan and its derivatives. In: Kim S-K (ed) Chitin, chitosan, oligosaccharides and their derivatives: biological activities and applications. CRC Press, Boca Raton, pp 619–631

    Chapter  Google Scholar 

  • El Ghaouth A, Arul J, Wilson C, Benhamou N (1997) Biochemical and cytochemical aspects of the interactions of chitosan and Botrytis cinerea in bell pepper fruit. Postharvest Biol Technol 12(2):183–194

    Article  CAS  Google Scholar 

  • Ellis RJ (1981) Chloroplast proteins: synthesis, transport, and assembly. Annu Rev Plant Physiol 32(1):111–137

    Article  CAS  Google Scholar 

  • El-Sawy NM, Abd El-Rehim HA, Elbarbary AM, Hegazy E-SA (2010) Radiation-induced degradation of chitosan for possible use as a growth promoter in agricultural purposes. Carbohydr Polym 79(3):555–562

    Article  CAS  Google Scholar 

  • El-Tantawy E (2009) Behavior of tomato plants as affected by spraying with chitosan and aminofort as natural stimulator substances under application of soil organic amendments. PJBS 12(17):1164–1173

    CAS  PubMed  Google Scholar 

  • Falcón-Rodríguez AB, Costales D, Cabrera JC, Martínez-Téllez MÁ (2011) Chitosan physico–chemical properties modulate defense responses and resistance in tobacco plants against the oomycete Phytophthora nicotianae. Pestic Biochem Physiol 100(3):221–228

    Article  Google Scholar 

  • Fukuda H (1980) Polyelectrolyte complexes of chitosan with sodium carboxymethylcellulose. Bull Chem Soc Jpn 53(4):837–840

    Article  CAS  Google Scholar 

  • Guan Y-J, Hu J, Wang X-J, Shao C-X (2009) Seed priming with chitosan improves maize germination and seedling growth in relation to physiological changes under low temperature stress. J Zhejiang Univ Sci B 10(6):427–433

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hu X, Neill SJ, Fang J, Cai W, Tang Z (2004) Mitogen-activated protein kinases mediate the oxidative burst and saponin synthesis induced by chitosan in cell cultures of Panax ginseng. Sci China C Life Sci 47(4):303–312

    Article  CAS  PubMed  Google Scholar 

  • Iriti M, Faoro F (2009) Chitosan as a MAMP, searching for a PRR. Plant Signal Behav 4(1):66–68

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jana S, Choudhuri MA (1982) Glycolate metabolism of three submersed aquatic angiosperms during ageing. Aquat Bot 12(C):345–354

    Article  CAS  Google Scholar 

  • Jaresitthikunchai J, Phaonakrop N, Kittisenachai S, Roytrakul S (2009) Rapid in-gel digestion protocol for protein identification by peptide mass fingerprint. In: Proceeding of the 2nd biochemistry and molecular biology conference: biochemistry and molecular biology for regional sustainable development, Khon Kaen University, Khon Kaen, pp 7–8

  • Johansson C, Samskog J, Sundström L, Wadensten H, Björkesten L, Flensburg J (2006) Differential expression analysis of Escherichia coli proteins using a novel software for relative quantitation of LC–MS/MS data. Proteomics 6(16):4475–4485

    Article  CAS  PubMed  Google Scholar 

  • Kauss H, Jeblick W (1996) Influence of salicylic acid on the induction of competence for H2O2 elicitation (comparison of ergosterol with other elicitors). Plant Physiol 111(3):755–763

    CAS  PubMed Central  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Choi H, Suh S, Doo I-S, Oh K-Y, Choi EJ, Taylor ATS, Low PS, Lee Y (1999) Oligogalacturonic acid and chitosan reduce stomatal aperture by inducing the evolution of reactive oxygen species from guard cells of tomato and Commelina communis. Plant Physiol 121(1):147–152

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Levine A, Tenhaken R, Dixon R, Lamb C (1994) H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79(4):583–593

    Article  CAS  PubMed  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • Limpanavech P, Chaiyasuta S, Vongpromek R, Pichyangkura R, Khunwasi C, Chadchawan S, Lotrakul P, Bunjongrat R, Chaidee A, Bangyeekhun T (2008) Chitosan effects on floral production, gene expression, and anatomical changes in the Dendrobium orchid. Sci Hortic (Amsterdam) 116(1):65–72

    Article  CAS  Google Scholar 

  • Lin W, Hu X, Zhang W, John Rogers W, Cai W (2005) Hydrogen peroxide mediates defence responses induced by chitosans of different molecular weights in rice. J Plant Physiol 162(8):937–944

    Article  CAS  PubMed  Google Scholar 

  • Meyer T, Lamberts B (1965) Use of coomassie brilliant blue R250 for the electrophoresis of microgram quantities of parotid saliva proteins on acrylamide-gel strips. Biochim Biophys Acta 107(1):144–145

    Article  CAS  PubMed  Google Scholar 

  • Neill S, Desikan R, Hancock J (2002) Hydrogen peroxide signalling. Curr Opin Plant Biol 5(5):388–395

    Article  CAS  PubMed  Google Scholar 

  • Nge KL, Nwe N, Chandrkrachang S, Stevens WF (2006) Chitosan as a growth stimulator in orchid tissue culture. Plant Sci 170(6):1185–1190

    Article  CAS  Google Scholar 

  • Nott A, Jung H-S, Koussevitzky S, Chory J (2006) Plastid-to-nucleus retrograde signaling. Annu Rev Plant Biol 57:739–759

    Article  CAS  PubMed  Google Scholar 

  • Ohta K, Taniguchi A, Konishi N, Hosoki T (1999) Chitosan treatment affects plant growth and flower quality in Eustoma grandiflorum. Sci Hortic (Amsterdam) 34(2):233–234

    CAS  Google Scholar 

  • Ouyang S, Zhu W, Hamilton J, Lin H, Campbell M, Childs K, Thibaud-Nissen F, Malek RL, Lee Y, Zheng L (2007) The TIGR rice genome annotation resource: improvements and new features. Nucl Acids Res 35:883–887

    Article  Google Scholar 

  • Park OK (2004) Proteomic studies in plants. J Biochem Mol Biol 37(1):133–138

    Article  CAS  PubMed  Google Scholar 

  • Perkins DN, Pappin DJC, Creasy DM, Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20(18):3551–3567

    Article  CAS  PubMed  Google Scholar 

  • Peterson GL (1982) Determination of total protein. Methods Enzymol 91:95–119

    Article  Google Scholar 

  • Piersma SR, Fiedler U, Span S, Lingnau A, Pham TV, Hoffmann S, Kubbutat MH, Jimenez CR (2010) Workflow comparison for label-free, quantitative secretome proteomics for cancer biomarker discovery: method evaluation, differential analysis, and verification in serum. J Proteome Res 9(4):1913–1922

    Article  CAS  PubMed  Google Scholar 

  • Piersma SR, Warmoes M, de Wit M, de Reus I, Knol J, Jimenez CR (2013) Whole gel processing procedure for GeLC–MS/MS based proteomics. Proteome Sci 11(1):17

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Plaxton WC (1996) The organization and regulation of plant glycolysis. Annu Rev Plant Physiol Plant Mol Biol 47:185–214

    Article  CAS  PubMed  Google Scholar 

  • Pongprayoon W, Roytrakul S, Pichayangkura R, Chadchawan S (2013) The role of hydrogen peroxide in chitosan-induced resistance to osmotic stress in rice (Oryza sativa L.). Plant Growth Regul 70(2):159–173

    Article  CAS  Google Scholar 

  • Pornpienpakdee P, Singhasurasak R, Chaiyasap P, Pichyangkura R, Bunjongrat R, Chadchawan S, Limpanavech P (2010) Improving the micropropagation efficiency of hybrid Dendrobium orchids with chitosan. Sci Hortic (Amsterdam) 124(4):490–499

    Article  CAS  Google Scholar 

  • Pospieszny H, Zielinska L (1997) Ultrastructure of leaf cells treated with chitosan. Adv Chitin Sci 2:139–144

    CAS  Google Scholar 

  • Rodríguez A, Ramírez M, Cárdenas R, Hernández A, Velázquez M, Bautista S (2007) Induction of defense response of Oryza sativa L. against Pyricularia grisea (Cooke) Sacc. by treating seeds with chitosan and hydrolyzed chitosan. Pestic Biochem Physiol 89(3):206–215

    Article  Google Scholar 

  • Romanazzi G, Nigro F, Ippolito A, Divenere D, Salerno M (2002) Effects of pre and postharvest chitosan treatments to control storage grey mold of table grapes. J Food Sci 67(5):1862–1867

    Article  CAS  Google Scholar 

  • Rossard S, Luini E, Pérault J-M, Bonmort J, Roblin G (2006) Early changes in membrane permeability, production of oxidative burst and modification of PAL activity induced by ergosterol in cotyledons of Mimosa pudica. J Exp Bot 57(6):1245–1252

    Article  CAS  PubMed  Google Scholar 

  • Saeed A, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M (2003) TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34(2):374

    CAS  PubMed  Google Scholar 

  • Santoni V, Molloy M, Rabilloud T (2000) Membrane proteins and proteomics: un amour impossible? Electrophoresis 21(6):1054–1070

    Article  CAS  PubMed  Google Scholar 

  • Shabala SN, Shabala SI, Martynenko AI, Babourina O, Newman IA (1998) Salinity effect on bioelectric activity, growth, Na+ accumulation and chlorophyll fluorescence of maize leaves: a comparative survey and prospects for screening. Funct Plant Biol 25(5):609–616

    CAS  Google Scholar 

  • Sharathchandra R, Raj SN, Shetty NP, Amruthesh K, Shetty HS (2004) A Chitosan formulation Elexa™ induces downy mildew disease resistance and growth promotion in pearl millet. Crop Prot 23(10):881–888

    Article  CAS  Google Scholar 

  • Suzuki Y, Makino A (2012) Availability of Rubisco small subunit up-regulates the transcript levels of large subunit for stoichiometric assembly of its holoenzyme in rice. Plant Physiol 160(1):533–540

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tabb DL, Vega-Montoto L, Rudnick PA, Variyath AM, Ham AJ, Bunk DM, Kilpatrick LE, Billheimer DD, Blackman RK, Cardasis HL, Carr SA, Clauser KR, Jaffe JD, Kowalski KA, Neubert TA, Regnier FE, Schilling B, Tegeler TJ, Wang M, Wang P, Whiteaker JR, Zimmerman LJ, Fisher SJ, Gibson BW, Kinsinger CR, Mesri M, Rodriguez H, Stein SE, Tempst P, Paulovich AG, Liebler DC, Spiegelman C (2010) Repeatability and reproducibility in proteomic identifications by liquid chromatography–tandem mass spectrometry. J Proteome Res 9(2):761–776

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tefon BE, Maass S, Ozcengiz E, Becher D, Hecker M, Ozcengiz G (2011) A comprehensive analysis of Bordetella pertussis surface proteome and identification of new immunogenic proteins. Vaccine 29(19):3583–3595

    Article  CAS  PubMed  Google Scholar 

  • Terry LA, Joyce DC (2004) Elicitors of induced disease resistance in postharvest horticultural crops: a brief review. Postharvest Biol Tec 32(1):1–13

    Article  Google Scholar 

  • Thorsell A, Portelius E, Blennow K, Westman Brinkmalm A (2007) Evaluation of sample fractionation using micro scale liquid phase isoelectric focusing on mass spectrometric identification and quantitation of proteins in a SILAC experiment. Rapid Commun Mass Spectrom 21(5):771–778

    Article  CAS  PubMed  Google Scholar 

  • Torres MA, Dangl JL (2005) Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr Opin Plant Biol 8(4):397–403

    Article  CAS  PubMed  Google Scholar 

  • Tsigos I, Martinou A, Kafetzopoulos D, Bouriotis V (2000) Chitin deacetylases: new, versatile tools in biotechnology. Trends Biotechnol 18(7):305–312

    Article  CAS  PubMed  Google Scholar 

  • Vajrabhaya M, Vajrabhaya T (1991) Somaclonal variation of salt tolerance in rice. Biotechnol Agric 14:368–382

    Google Scholar 

  • Vander P, Vårum KM, Domard A, El Gueddari NE, Moerschbacher BM (1998) Comparison of the ability of partially N-acetylated chitosans and chitooligosaccharides to elicit resistance reactions in wheat leaves. Plant Physiol 118(4):1353–1359

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vasconsuelo A, Giulietti AM, Boland R (2004) Signal transduction events mediating chitosan stimulation of anthraquinone synthesis in Rubia tinctorum. Plant Sci 166(2):405–413

    Article  CAS  Google Scholar 

  • Vieira Dos Santos C, Rey P (2006) Plant thioredoxins are key actors in the oxidative stress response. Trends Plant Sci 11(7):329–334

    Article  CAS  PubMed  Google Scholar 

  • Walker-Simmons M, Jin D, West CA, Hadwiger L, Ryan CA (1984) Comparison of proteinase inhibitor-inducing activities and phytoalexin elicitor activities of a pure fungal endopolygalacturonase, pectic fragments, and chitosans. Plant Physiol 76(3):833–836

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wilkins MR, Pasquali C, Appel RD, Ou K, Golaz O, Sanchez J-C, Yan JX, Gooley AA, Hughes G, Humphery-Smith I (1996) From proteins to proteomes: large scale protein identification by two-dimensional electrophoresis and arnino acid analysis. Nat Biotechnol 14(1):61–65

    Article  CAS  Google Scholar 

  • Wolff S, Otto A, Albrecht D, Zeng JS, Buttner K, Gluckmann M, Hecker M, Becher D (2006) Gel-free and gel-based proteomics in Bacillus subtilis: a comparative study. Mol Cell Proteomics 5(7):1183–1192

    Article  CAS  PubMed  Google Scholar 

  • Yusupova Z, Akhmetova I, Khairullin R, Maksimov I (2005) The effect of chitooligosaccharides on hydrogen peroxide production and anionic peroxidase activity in wheat coleoptiles. Russ J Plant Physiol 52(2):209–212

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission (FW656B-55). CE in Environment and Plant Physiology is supported by Ratchadaphiseksompot endowment fund, Chulalongkorn University. The facilities were supported by the Thai Government Stimulus Package 2 (TKK2555), under PERFECTA and the Faculty of Science, Chulalongkorn University (AIBI). Nontalee Chamnanmanoontham was supported by the Royal Golden Jubilee Ph.D. Program. W.P. is supported by post doctoral scholarship, Chulalongkorn University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Supachitra Chadchawan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 33 kb)

Supplementary material 2 (XLSX 92 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chamnanmanoontham, N., Pongprayoon, W., Pichayangkura, R. et al. Chitosan enhances rice seedling growth via gene expression network between nucleus and chloroplast. Plant Growth Regul 75, 101–114 (2015). https://doi.org/10.1007/s10725-014-9935-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-014-9935-7

Keywords

Navigation