Skip to main content
Log in

Polyamine metabolism and biosynthetic genes expression in tomato (Lycopersicon esculentum Mill.) seedlings during cold acclimation

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

To elucidate the possible involvement of polyamines (PAs) in the chilling tolerance of tomato, we have investigated the metabolism of PAs, physiological features including levels of compatible solutes (soluble sugar, soluble protein, proline) and the malondialdehyde (MDA) content in the leaves of two tomato cultivar seedlings differing in chilling tolerance during cold acclimation. Putrescine (Put) has been shown to accumulate in leaves of both cultivars but to be higher in cv. Mawa (chilling-tolerant) than in cv. Moneymaker (chilling-sensitive) during cold acclimation. Arginine decarboxylase (ADC) activities increased in both cultivars in response to cold acclimation; however, almost no changes of ornithine decarboxylase (ODC) activities were observed in both cultivars. Furthermore, we found LeADC and LeODC expressions enhanced partly, but the LeADC1 expression did not improve in two cultivars under cold acclimation. Activity levels of diamine oxidase (DAO), polyamine oxidase (PAO), soluble sugar and soluble protein contents were higher in cv. Mawa than those in cv. Moneymaker under cold acclimation. PAs catabolism might influence proline accumulation in tomato leaves under cold acclimation. MDA content did not obviously increase in both cultivars except when the Put accumulation was reduced. Furthermore, we found that the chilling tolerances of tomato seedlings were reduced by exogenous d-arginine (D-Arg) application, but by adding back Put, the chilling tolerances were enhanced. Hence, the results suggest that Put plays an important role in tomato chilling tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

PAs:

Polyamines

Put:

Putrescine

Spd:

Spermidine

Spm:

Spermine

ADC:

Arginine decarboxylase

ODC:

Ornithine decarboxylase

dc-SAM:

Decarboxylated S-Adenosylmethionine

SAM:

S-Adenosylmethionine

SAMDC:

S-Adenosylmethionine decarboxylase

DAO:

Diamine oxidase

PAO:

Polyamine oxidase

MDA:

Malondialdehyde

Pro:

Proline

d-Arg:

d-arginine

PCA:

Perchloric acid

References

  • Akiyama T, Jin S (2007) Molecular cloning and characterization of an arginine decarboxylase gene up-regulated by chilling stress in rice seedlings. J Plant Physiol 164(5):645–654

    Article  CAS  PubMed  Google Scholar 

  • Anderson MD, Prasad TK, Martin BA, Stewart CR (1994) Differential gene expression in chilling-acclimated maize seedlings and evidence for the involvement of abscisic acid in chilling tolerance. Plant Physiol 105:331–339

    CAS  PubMed Central  PubMed  Google Scholar 

  • Aziz A, Martin-Tanguy J, Larher F (1998) Stress-induced changes in polyamine and tyramine levels can regulate proline accumulation in tomato leaf discs treated with sodium chloride. Physiol Plant 104(2):195–202

    Article  CAS  Google Scholar 

  • Aziz A, Martin-Tanguy J, Larher F (1999) Salt stress-induced proline accumulation and changes in tyramine and polyamine levels are linked to ionic adjustment in tomato leaf discs. Plant Sci 145(2):83–91

    Article  CAS  Google Scholar 

  • Bagni N, Tassoni A (2001) Biosynthesis, oxidation and conjugation of aliphatic polyamines in higher plants. Amino Acids 20:301–317

    Article  CAS  PubMed  Google Scholar 

  • Bais HP, Ravishankar GA (2002) Role of polyamines in the ontogeny of plants and their biotechnological applications. Plant Cell Tissue Organ Cult 69:1–34

    Article  CAS  Google Scholar 

  • Bohnert HJ, Shen B (1999) Transformation and compatible solutes. Sci Hortic 78:237–260

    Article  CAS  Google Scholar 

  • Bouchereau A, Aziz A, Larher F, Martin-Tanguy J (1999) Polyamines and environmental challenges: recent development. Plant Sci 140:103–125

    Article  CAS  Google Scholar 

  • Cona A, Rea G, Angelini R, Federico R, Tavladoraki P (2006) Functions of amine oxidases in plant development and defence. Trends Plant Sci 11:80–88

    Article  CAS  PubMed  Google Scholar 

  • Cowley T, Walters DR (2002) Polyamine metabolism in barley reacting hypersensitively to the powdery mildew fungus Blumeria graminis f. sp. hordei. Plant Cell Environ 25(3):461–468

    Article  CAS  Google Scholar 

  • Cuevas JC, Lopez-Cobollo R, Alcazar R, Zarza X, Koncz C, Altabella T, Salinas J, Tiburcio AF, Ferrando A (2008) Putrescine is involved in Arabidopsis freezing tolerance and cold acclimation by regulating ABA levels in response to low temperature. Plant Physiol 148:1094–1105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dhindsa RS, Pulmb-Dhindsa P, Thorpe TA (1981) Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation and decreased levels of superoxide dismutase and catalase. J Exp Bot 32:93–101

    Article  CAS  Google Scholar 

  • Dionisio-Sese ML, Tobita S (1998) Antioxidant responses of rice seedlings to salinity stress. Plant Sci 135(1):1–9

    Article  CAS  Google Scholar 

  • Duan JJ, Li J, Guo S, Kang Y (2008) Exogenous spermidine affects polyamine metabolism in salinity-stressed Cucumis sativus roots and enhances short-term salinity. J Plant Physiol 165:1620–1635

    Article  CAS  PubMed  Google Scholar 

  • Durmus N, Kadioglu A (2005) Spermine and putrescine enhance oxidative stress tolerance in maize leaves. Acta Physiol Plant 27:515–522

    Article  CAS  Google Scholar 

  • Evans PT, Malmberg RL (1989) Do polyamines have roles in plant development? Ann Rev Plant Physiol Plant Mol Biol 40:235–269

    Article  CAS  Google Scholar 

  • Galston AW, Kaur-Sawhney R, Altabella T, Tiburcio AF (1997) Plant polyamines in reproductive activity and response to abiotic stress. Bot Acta 110:197–207

    Article  CAS  Google Scholar 

  • Groppa MD, Benavides MP (2008) Polyamines and abiotic stress: recent advance. Amino Acids 34:35–45

    Article  CAS  PubMed  Google Scholar 

  • Groppa MD, Zawoznik MS, Tomaro ML, Benavides MP (2008) Inhibition of root growth and polyamine metabolism in sunflower (Helianthus annuus) seedlings under cadmium and copper stress. Biol Trace Elem Res 126(1–3):246–256

    Article  CAS  PubMed  Google Scholar 

  • Guy CL (1990) Cold acclimation and freezing stress tolerance: role of protein metabolism. Annu Rev Plant Biol 41:187–223

    Article  CAS  Google Scholar 

  • Hu X, Zhang Y, Shi Y, Zhang Z, Zou Z, Zhang H, Zhao J (2012) Effect of exogenous spermidine on polyamine content and metabolism in tomato exposed to salinity–alkalinity mixed stress. Plant Physiol Biochem 57:200–209

    Article  CAS  PubMed  Google Scholar 

  • Hussain SS, Ali M, Ahmad M, Siddique KH (2011) Polyamines: natural and engineered abiotic and biotic stress tolerance in plants. Biotechnol Adv 29(3):300–311

    Article  CAS  PubMed  Google Scholar 

  • Igarashi K, Kashiwagi K (2000) Polyamines: mysterious modulators of cellular functions. Biochem Biophys Res Commun 271:559–564

    Article  CAS  PubMed  Google Scholar 

  • Katsukabe Y, He L, Nada K, Misawa S, Ihara I, Tachibana S (2004) Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana. Plant Cell Physiol 45:712–722

    Article  Google Scholar 

  • Liu HP, Dong BH, Zhang YY, Liu ZP, Liu YL (2004) Relationship between osmotic stress and the levels of free, conjugated, and bound polyamines in leaves of wheat seedlings. Plant Sci 166:1261–1267

    Article  CAS  Google Scholar 

  • Liu YF, Qi MF, Li TL (2012) Photosynthesis, photoinhibition, and antioxidant system in tomato leaves stressed by low night temperature and their subsequent recovery. Plant Sci 196:8–17

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Romero D, Serrano M, Valero D (2003) Physiological changes in pepino (Solanum muricatum Ait.) fruit stored at chilling and non-chilling temperatures. Postharvest Biol Technol 30:177–186

    Article  Google Scholar 

  • McNeil SD, Nuccio ML, Hanson AD (1999) Betaines and related osmoprotectants. Targets for metabolic engineering of stress resistance. Plant Physiol 120:945–949

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moschou PN, Delis ID, Paschalidis KA, Roubelakis-Angelakis KA (2008a) Transgenic tobacco plants overexpressing polyamine oxidase are not able to cope with oxidative burst generated by abiotic factors. Physiol Plant 133:140–156

    Article  CAS  PubMed  Google Scholar 

  • Moschou PN, Paschalidis KA, Delis ID, Andriopoulou AH, Lagiotis GD, Yakoumakis DI, Roubelakis-Angelakis KA (2008b) Spermidine exodus and oxidation in the apoplast induced by abiotic stress is responsible for H2O2 signatures that direct tolerance responses in tobacco. Plant Cell 20:1708–1724

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nadeau P, Delaney S, Chouinard L (1987) Effect of cold hardening on the regulation of polyamine levels in wheat (Triticum aestivum L.) and alfalfa (Medicago sativa L.). Plant Physiol 84:73–77

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nair S, Singh Z (2004) Chilling injury in mango fruit in relation to biosynthesis of free polyamines. J Hortic Sci Biotechnol 79:515–522

    CAS  Google Scholar 

  • Nayyar H (2005) Putrescine increases floral retention, pod set and seed yield in cold stressed chickpea. J Agron Crop Sci 191:340–345

    Article  CAS  Google Scholar 

  • Pang XM, Zhang ZY, Wen XP, Ban Y, Moriguchi T (2007) Polyamine, all-purpose players in response to environment stresses in plants. Plant Stress 1:173–188

    Google Scholar 

  • Rider JE, Hacker A, Mackintosh CA, Pegg AE, Woster PM, Casero RA Jr (2007) Spermine and spermidine mediate protection against oxidative damage caused by hydrogen peroxide. Amino Acids 33:231–240

    Article  CAS  PubMed  Google Scholar 

  • Rizza F, Pagani D, Stanca AM, Cattivelli L (2001) Use of chlorophyll fluorescence to evaluate the cold acclimation and freezing tolerance of winter and spring oats. Plant Breed 120(5):389–396

    Article  Google Scholar 

  • Sarjala T, Taulavuori K, Savonen EM, Edfast AB (1997) Does availability of potassium affect cold hardening of Scots pine through polyamine metabolism? Physiol Plant 99:56–62

    Article  CAS  Google Scholar 

  • Shen W, Nada K, Tachibana S (2000) Involvement of polyamines in the chilling tolerance of cucumber cultivars. Plant Physiol 124:431–439

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Su GX, An ZF, Zhang WH, Liu YL (2005) Light promotes the synthesis of lignin through the production of H2O2 mediated by diamine oxidases in soybean hypocotyls. J Plant Physiol 162:1297–1303

    Article  CAS  PubMed  Google Scholar 

  • Tambussi EA, Bartoli GG, Guiamet JJ, Beltrano J, Araus JL (2004) Oxidative stress and photo damage at low temperatures in soybean (Glycine max L. Merr.) leaves. Plant Sci 167:19–26

    Article  CAS  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation. Annu Rev Plant Physiol Plant Mol Biol 50:571–599

    Article  CAS  PubMed  Google Scholar 

  • Tonon G, Kevers C, Faivre-Rampant O, Graziani M, Gaspar T (2004) Effect of NaCl and mannitol iso-osmotic stresses on proline and free polyamine levels in embryogenic Fraxinus angustifolia callus. J Plant Physiol 161(6):701–708

    Article  CAS  PubMed  Google Scholar 

  • Wang JW, Kao CH (2006) Aluminum-inhibited root growth of rice seedlings is mediated through putrescine accumulation. Plant Soil 288(1–2):373–381

    Article  CAS  Google Scholar 

  • Wang J, Sun PP, Chen CL, Wang Y, Fu XZ, Liu JH (2011) An arginine decarboxylase gene PtADC from Poncirus trifoliata confers abiotic stress tolerance and promotes primary root growth in Arabidopsis. J Exp Bot 62:2899–2914

    Article  CAS  PubMed  Google Scholar 

  • Wanner LA, Junttila O (1999) Cold-induced freezing tolerance in Arabidopsis. Plant Physiol 120:391–400

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamaguchi K, Takahashi Y, Berberich T, Imai A, Takahashi T, Michael AJ, Kusano T (2007) A protective role for the polyamine spermine against drought stress in Arabidopsis. Biochem Biophys Res Commun 352:486–490

    Article  CAS  PubMed  Google Scholar 

  • Yang JC, Zhang JH, Liu K, Wang ZQ, Liu LJ (2007) Involvement of polyamines in the drought resistance of rice. J Exp Bot 58:1545–1555

    Article  CAS  PubMed  Google Scholar 

  • Zapata PJ, Serrano M, Pretel MT, Amorόs A, Botella MA (2004) Polyamines and ethylene changes during germination of different plants species under salinity. Plant Sci 167:781–788

    Article  CAS  Google Scholar 

  • Zhang W, Jiang B, Li W, Song H, Yu Y, Chen J (2009) Polyamines enhance chilling tolerance of cucumber (Cucumis sativus L.) through modulating antioxidative system. Sci Hortic 122(2):200–208

    Article  CAS  Google Scholar 

  • Zhang XH, Shen L, Li FJ, Meng DM, Sheng JP (2011) Methyl salicylate-induced arginine catabolism is associated with up-regulation of polyamines and nitric oxide levels and improves chilling tolerance in cherry tomato fruit. J Agric Food Chem 59:9351–9357

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Shen L, Li F, Meng D, Sheng J (2013) Hot air treatment-induced arginine catabolism is associated with elevated polyamines and proline levels and alleviates chilling injury in postharvest tomato fruit. J Sci Food Agric 93:3245–3251

    Article  CAS  PubMed  Google Scholar 

  • Zhao FG, Sun C, Liu YL, Zhang WH (2003) Relationship between polyamine metabolism in roots and salt tolerance of barley seedlings. Acta Botanica Sinica 45:295–300

    CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the 12th Five-Year Support Project of China (Grant No.: 2011BAD12B03), and the Major Scientific Research Projects of Liaoning Province (Grant No.: 2011215003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyan Qi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 984 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Y., Diao, Q. & Qi, H. Polyamine metabolism and biosynthetic genes expression in tomato (Lycopersicon esculentum Mill.) seedlings during cold acclimation. Plant Growth Regul 75, 21–32 (2015). https://doi.org/10.1007/s10725-014-9928-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-014-9928-6

Keywords

Navigation