Skip to main content

Kiwi fruit PMEI inhibits PME activity, modulates root elongation and induces pollen tube burst in Arabidopsis thaliana

Abstract

Pectins are major components of primary cell wall that play a crucial role in plant development. After biosynthesis, pectins are secreted in the cell wall by Golgi-derived vesicles under a highly methylesterified form and are de-methylesterified by pectin methylesterases (PME). It is hypothesized that PME might be regulated by pectin methylesterase inhibitor (PMEI). In this paper, we show by isoelectric focalisation and subsequent zymogram that kiwi PMEI was able to inhibit Arabidopsis PME activity by forming a complex. The complexes were stable under a wide range of ionic strength and pH. Moreover, PMEI might be able to form a complex with basic PMEs including three PMEs strongly expressed in root and four PMEs expressed in pollen grains. Finally, exogenous treatment with kiwi PMEI was able to reduce the activity of cell wall resident PMEs with persistent effects such as an increase of the root growth and a dramatic effect on pollen tube stability.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Abbreviations

HG:

Homogalacturonan

IEF:

Isoelectric focalisation

PME:

Pectin methylesterase

PMEI:

Pectin methylesterase inhibitor

RG-I:

Rhamnogalacturonan-I

RG-II:

Rhamnogalacturonan-II

References

  1. Abramoff MD, Magelhaes PJ, Ram SJ (2004) Image processing with Image. J Biophotonics Int 11:36–42

    Google Scholar 

  2. Balestrieri C, Castaldo D, Giovane A, Quagliuolo L, Servillo L (1990) A glycoprotein inhibitor of pectin methylesterase in kiwi fruit (Actinidia chinensis). Eur J Biochem 193:183–187

    CAS  PubMed  Article  Google Scholar 

  3. Bertheau Y, Madgidi-Hervan E, Kotoujansky A, Nguyen-The C, Andro T, Coleno A (1984) Detection of depolymerase isoenzymes after electrophoresis or electrofocusing or in titration curves. Anal Biochem 139:383–389

    CAS  PubMed  Article  Google Scholar 

  4. Bjellqvist B, Hughes GJ, Pasquali C, Paquet N, Ravier F, Sanchez JC, Frutiger S, Hochstrasser DF (1993) The focusing positions of polypeptides in immobilized pH gradients can be predicted from their amino acid sequences. Electrophoresis 14:1023–1031

    CAS  PubMed  Article  Google Scholar 

  5. Blum H, Beier H, Gross HJ (1987) Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8:93–99

    CAS  Article  Google Scholar 

  6. Boavida LC, McCormick S (2007) Temperature as a determinant factor for increased and reproducible in vitro pollen germination in Arabidopsis thaliana. Plant J 52:570–582

    CAS  PubMed  Article  Google Scholar 

  7. Bosch M, Cheung AY, Hepler PK (2005) Pectin methylesterase, a regulator of pollen tube growth. Plant Physiol 138:1334–1346

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  8. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    CAS  PubMed  Article  Google Scholar 

  9. Brady SM, Orlando DA, Lee JY, Koch J, Dinneny JR, Mace D, Ohler U, Benfey PN (2007) A high-resolution root spatiotemporal map reveals dominant expression patterns. Science 318:801–806

    CAS  PubMed  Article  Google Scholar 

  10. Camardella L, Carratore V, Ciardiello MA, Servillo L, Balestrieri C, Giovane A (2000) Kiwi protein inhibitor of pectin methylesterase amino-acid sequence and structural importance of two disulfide bridges. Eur J Biochem 267:4561–4565

    CAS  PubMed  Article  Google Scholar 

  11. Chebli Y, Kaneda M, Zerzour R, Geitmann A (2012) The cell wall of the Arabidopsis pollen tube-spatial distribution, recycling, and network formation of polysaccharides. Plant Physiol 160:1940–1955

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  12. Ciardiello MA, D’Avino R, Amoresano A, Tuppo L, Carpentieri A, Carratore V, Tamburrini M, Giovane A, Pucci P, Camardella L (2007) The peculiar structural features of kiwi fruit pectin methylesterase: amino acid sequence, oligosaccharide structure, and modeling of the interaction with its natural proteinaceous inhibitor. Proteins 71:195–206

    Article  Google Scholar 

  13. Dardelle F, Lehner A, Ramdani Y, Bardor M, Lerouge P, Driouich A, Mollet JC (2010) Biochemical and immunocytological characterizations of Arabidopsis pollen tube cell wall. Plant Physiol 153:1563–1576

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  14. Dedeurwaerder S, Menu-Bouaouiche L, Mareck A, Lerouge P, Guérineau F (2009) Activity of an atypical Arabidopsis thaliana pectin methylesterase. Planta 229:311–321

    CAS  PubMed  Article  Google Scholar 

  15. Derbyshire P, McCann MC, Roberts K (2007) Restricted cell elongation in Arabidopsis hypocotyls is associated with a reduced average pectin esterification level. BMC Plant Biol 7:31

    PubMed Central  PubMed  Article  Google Scholar 

  16. Deytieux-Belleau C, Vallet A, Donèche B, Geny L (2008) Pectin methylesterase and polygalacturonase in the developing grape skin. Plant Physiol Biochem 46:638–646

    CAS  PubMed  Article  Google Scholar 

  17. Di Matteo A, Giovane A, Raiola A, Camardella L, Bonivento D, De Lorenzo G, Cervone F, Bellincampi D, Tsernoglou D (2005) Structural bases for the interaction between pectin methylesterase and a specific inhibitor protein. Plant Cell 17:849–858

    PubMed Central  PubMed  Article  Google Scholar 

  18. Eriksson EM, Bovy A, Manning K, Harrison L, Andrews J, De Silva J, Tucker GA, Seymour GB (2004) Effect of the colorless non-ripening mutation on cell wall biochemistry and gene expression during tomato fruit development and ripening. Plant Physiol 136:4184–4197

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  19. Francis EK, Lam SY, Copenhaver GP (2006) Separation of Arabidopsis pollen tetrads is regulated by QUARTET1, a pectin methylesterase gene. Plant Physiol 142:1004–1013

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  20. Fry SC (2011) Cell wall polysaccharide composition and covalent crosslinking. Ann Plant Rev 41:1–42

    CAS  Google Scholar 

  21. Gao D, Knight MR, Trewavas AJ, Sattelmacher B, Plieth C (2004) Self reporting Arabidopsis expressing pH and [Ca2+] indicators unveil ion dynamics in the cytoplasm and the apoplast under abiotic stress. Plant Physiol 134:898–908

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  22. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press, Totowa

    Google Scholar 

  23. Geitmann A, Steer M (2006) The architecture and properties of the pollen tube cell wall. In: Malhó R (ed) The pollen tube. Plant Cell Monogr, vol 3. Springer, Berlin, pp 177–200

  24. Guénin S, Mareck A, Rayon C, Lamour R, Assoumou Ndong Y, Domon JM, Sénéchal F, Fournet F, Jamet E, Canut H, Percoco G, Mouille G, Rolland A, Rustérucci C, Guerineau F, Van Wuytswinkel O, Gillet F, Driouich A, Lerouge P, Gutierrez L, Pelloux J (2011) Identification of pectin methylesterase 3 as a basic pectin methylesterase isoform involved in adventitious rooting in Arabidopsis thaliana. New Phytol 192:114–126

    PubMed  Article  Google Scholar 

  25. Hepler PK, Kunkel JG, Rounds CM, Winship LJ (2012) Calcium entry into pollen tubes. Trends Plant Sci 17:32–38

    CAS  PubMed  Article  Google Scholar 

  26. Hruz T, Laule O, Szabo G, Wessendorp F, Bleuler S, Oertle L, Widmayer P, Gruissem W, Zimmermann P (2008) Genevestigator V3: a reference expression database for the meta-analysis of transcriptomes. Adv Bioinform 2008:420747

  27. James JJ, Alder NN, Mühling KH, Läuchli AE, Shakel KA, Donovan LA, Richards JH (2006) High apoplastic solute concentrations in leaves alter water relations of the halophytic shrub, Sarcobatus vermiculatus. J Exp Bot 57:139–147

    CAS  PubMed  Article  Google Scholar 

  28. Jiang L, Yang SL, Xie LF, Puah CS, Zhang XQ, Yang WC (2005) VANGUARD1 encodes a pectin methyl-esterase that enhances pollen tube growth in the Arabidopsis style and transmitting tract. Plant Cell 17:584–596

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  29. Klavons JA, Bennett AD (1986) Determination of methanol using alcohol oxidase and its application to methyl ester content of pectins. J Agric Food Chem 34:597–599

    CAS  Article  Google Scholar 

  30. Lacoux J, Gutierrez L, Dantin F, Beaudoin B, Roger D, Lainé E (2003) Antisense transgenesis of tobacco with a flax pectin methylesterase affects pollen ornamentation. Protoplasma 222:205–209

    CAS  PubMed  Article  Google Scholar 

  31. Lehner A, Dardelle F, Soret-Morvan O, Lerouge P, Driouich A, Mollet JC (2010) Pectins in the cell wall of Arabidopsis thaliana pollen tube and pistil. Plant Signal Behav 5:1282–1285

    Google Scholar 

  32. Lionetti V, Raiola A, Camardella L, Giovane A, Obel N, Pauly M, Favaron F, Cervone F, Bellincampi D (2007) Overexpression of pectin methylesterase inhibitors in Arabidopsis restricts fungal infection by Botrytis cinerea. Plant Physiol 143:1871–1880

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  33. Louvet R, Cavel E, Gutierrez L, Guénin S, Roger D, Gillet F, Guerineau F, Pelloux J (2006) Comprehensive expression profiling of the pectin methylesterase gene family during silique development in Arabidopsis thaliana. Planta 224:782–791

    Google Scholar 

  34. Magrane M, UniProt Consortium (2011) UniProt knowledgebase: a hub of integrated protein data. Database. doi:10.1093/database/bar009

  35. Micheli F (2001) Pectin methylesterases: cell wall enzymes with important roles in plant physiology. Trends Plant Sci 6:414–419

    CAS  PubMed  Article  Google Scholar 

  36. Micheli F, Sundberg B, Goldberg R, Richard L (2000) Radial distribution pattern of pectin methylesterases across the cambial region of hybrid aspen at activity and dormancy. Plant Physiol 124:191–199

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  37. Mollet JC, Leroux C, Dardelle F, Lehner A (2013) Cell wall composition, biosynthesis and remodeling during pollen tube growth. Plants 2:107–147

    CAS  Article  Google Scholar 

  38. Moustacas AM, Nari J, Borel M, Noat G, Ricard J (1991) Pectin methylesterase, metal ions and plant cell-wall extension. The role of metal ions in plant cell-wall extension. Biochem J 279:351–354

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Osorio S, Castillejo C, Quesada MA, Medina-Escobar N, Brownsey GJ, Suau R, Heredia A, Botella MA, Valpuesta V (2008) Partial demethylation of oligogalacturonides by pectin methyl esterase 1 is required for eliciting defence responses in wild strawberry (Fragaria vesca). Plant J 54:43–55

    CAS  PubMed  Article  Google Scholar 

  40. Osorio S, Bombarely A, Giavalisco P, Usadel B, Stephens C, Aragüez I, Medina-Escobar N, Botella MA, Fernie AR, Valpuesta V (2011) Demethylation of oligogalacturonides by FaPE1 in the fruits of the wild strawberry Fragaria vesca triggers metabolic and transcriptional changes associated with defence and development of the fruit. J Exp Bot 62:2855–2873

    CAS  PubMed  Article  Google Scholar 

  41. Parre E, Geitmann A (2005) Pectin and the role of the physical properties of the cell wall in pollen tube growth of Solanum chacoense. Planta 220:582–592

    CAS  PubMed  Article  Google Scholar 

  42. Peaucelle A, Louvet R, Johansen JN, Höfte H, Laufs P, Pelloux J, Mouille G (2008) Arabidopsis phyllotaxis is controlled by the methyl-esterification status of cell-wall pectins. Curr Biol 18:1943–1948

    CAS  PubMed  Article  Google Scholar 

  43. Peaucelle A, Braybrook SA, Le Guillou L, Bron E, Kuhlemeier C, Höfte H (2011) Pectin-induced changes in cell wall mechanics underlies organ initiation in Arabidopsis. Curr Biol 21:1720–1726

    CAS  PubMed  Article  Google Scholar 

  44. Pelletier S, Van Orden J, Wolf S, Vissenberg K, Delacourt J, Ndong YA, Pelloux J, Bischoff V, Urbain A, Mouille G, Lemonnier G, Renou JP, Höfte H (2010) A role for pectin de-methylesterification in a developmentally regulated growth acceleration in dark-grown Arabidopsis hypocotyls. New Phytol 188:726–739

    CAS  PubMed  Article  Google Scholar 

  45. Pelloux J, Rustérucci C, Mellerowicz EJ (2007) New insights into pectin methylesterase structure and function. Trends Plant Sci 12:267–277

    CAS  PubMed  Article  Google Scholar 

  46. Qin Y, Leydon AR, Manziello A, Pandey R, Mount D, Denic S, Vasic B, Johnson MA, Palanivelu R (2009) Penetration of the stigma and style elicits a novel transcriptome in pollen tubes, pointing to genes critical for growth in a pistil. PLoS Genet 5:e1000621

    PubMed Central  PubMed  Article  Google Scholar 

  47. Raiola A, Camardella L, Giovane A, Mattei B, De Lorenzo G, Cervone F, Bellincampi D (2004) Two Arabidopsis thaliana genes encode functional pectin methylesterase inhibitors. FEBS Lett 557:199–203

    CAS  PubMed  Article  Google Scholar 

  48. Reca IB, Lionetti V, Camardella L, D’Avino R, Giardina T, Cervone F, Bellicampi D (2012) A functional pectin methylesterase inhibitor protein (SolyPMEI) is expressed during tomato fruit ripening and interacts with PME-1. Plant Mol Biol 79:429–442

    CAS  PubMed  Article  Google Scholar 

  49. Richard L, Qin LX, Gadal P, Goldberg R (1994) Molecular characterization of a putative pectin methylesterase cDNA and its expression in Arabidopsis thaliana (L.). FEBS Lett 355:135–139

    CAS  PubMed  Article  Google Scholar 

  50. Röckel N, Wolf S, Kost B, Rausch T, Greiner S (2008) Elaborate spatial patterning of cell-wall PME and PMEI at the pollen tube tip involves PMEI endocytosis, and reflects the distribution of esterified and de-esterified pectins. Plant J 53:133–143

    PubMed  Article  Google Scholar 

  51. Rounds CM, Lubeck E, Hepler PK, Winship LJ (2011) Propidium iodide competes with Ca2+ to label pectin in pollen tubes and Arabidopsis root hairs. Plant Physiol 157:175–187

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  52. Siedlecka A, Wiklund S, Péronne MA, Micheli F, Lesniewska J, Sethson I, Edlund U, Richard L, Sundberg B, Mellerowicz EJ (2008) Pectin methyl esterase inhibits intrusive and symplastic cell growth in developing wood cells of Populus. Plant Physiol 146:554–565

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  53. Suarez-Cervera M, Asturias JA, Vega-Maray A, Castells T, Lopez-Iglesias C, Ibarrola I, Arilla M, Gabarayeva N, Seoane-Camba J (2005) The role of allergenic proteins Pla a 1 and Pla a 2 in the germination of Platanus acerifolia pollen grains. Sexual Plant Reprod 18:101–112

    CAS  Article  Google Scholar 

  54. Thomson JD, Higgins DG, Gibson TJ (1994) CLUSTALW: improving the sensibility of progressive alignment through sequence weighting, position—specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  Google Scholar 

  55. Tian GW, Chen MH, Zaltsman A, Citovsky V (2006) Pollen-specific pectin methylesterase involved in pollen tube growth. Dev Biol 294:83–91

    CAS  PubMed  Article  Google Scholar 

  56. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  57. Vincken JP, Schols HA, Oomen R, McCann MC, Ulvskov P, Voragen AGJ, Visser RGF (2003) If homogalacturonan were a side chain of rhamnogalacturonan I. Implications for cell wall architecture. Plant Physiol 132:1781–1789

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  58. Wolf S, Grsic-Rausch S, Rausch T, Greiner S (2003) Identification of pollen expressed pectin methylesterase inhibitors in Arabidopsis. FEBS Lett 555:551–555

    CAS  PubMed  Article  Google Scholar 

  59. Wolf S, Rausch T, Greiner S (2009) The N-terminal pro-region mediates retention of unprocessed type-I PME in the Golgi apparatus. Plant J 58:361–375

    CAS  PubMed  Article  Google Scholar 

  60. Woriedh M, Wolf S, Marton ML, Hinze A, Gahrtz M, Becker D, Dresselhaus T (2013) External application of gametophyte-specific ZmPEMI1 induces pollen tube burst in maize. Plant Reprod. doi:10.1007/s00497-013-0221-z

  61. Zhang GY, Feng J, Wu J, Wang XW (2010) BoPMEI1, a pollen-specific pectin methylesterase inhibitor, has an essential role in pollen tube growth. Planta 231:1323–1332

    CAS  PubMed  Article  Google Scholar 

  62. Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136:2621–2632

    CAS  PubMed Central  PubMed  Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Anne Gée for her excellent technical assistance and the University of Rouen for its constant logistic helps. This work was supported by the ANR (ANR-09-BLANC-0007-01 Project GROWPEC). This work was supported by the University of Rouen and the “Trans Channel Wallnet” project that has been selected in the context of the INTERREG IVA France (Channel)—England European cross-border cooperation programme, which is co-financed by the ERDF.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Arnaud Lehner.

Additional information

Arnaud Lehner and Alain Mareck have equal contribution of the senior authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig S1

Electrophoresis gel of purified kiwi PMEI – (a) Molecular weight standards. (b) Purified kiwi PMEI (10 µg). (TIFF 3,477 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Paynel, F., Leroux, C., Surcouf, O. et al. Kiwi fruit PMEI inhibits PME activity, modulates root elongation and induces pollen tube burst in Arabidopsis thaliana . Plant Growth Regul 74, 285–297 (2014). https://doi.org/10.1007/s10725-014-9919-7

Download citation

Keywords

  • Pectin
  • Pectin methylesterase
  • Pectin methylesterase inhibitor
  • Pollen
  • Root growth
  • Arabidopsis