Plant Growth Regulation

, Volume 74, Issue 2, pp 193–197 | Cite as

Solar UV-B radiation modifies the proportion of volatile organic compounds in flowers of field-grown grapevine (Vitis vinifera L.) cv. Malbec

  • Mariana Gil
  • Rubén Bottini
  • Mariela Pontin
  • Federico J. Berli
  • María Victoria Salomon
  • Patricia Piccoli
Original Paper


Ultraviolet-B solar radiation (UV-B) is an environmental signal with biological effects in different plant tissues. Recent investigations reported dramatic changes of terpenes with a protective role in plant tissues submitted to biotic and abiotic stresses. This study examined the volatile organic compounds (VOCs) profile in flowers of Vitis vinifera L. cv. Malbec under filtered UV-B (or not). Gas chromatography–electron impact mass spectrometry analysis of flowers resulted in the identification of 12 VOCs, including eight sesquiterpenes, two aldehydes, and two ketones, being the oxygenated sesquiterpene farnesol the most abundant. The total amount of VOCs in flowers did not change irrespective UV-B had been filtered or not, suggesting those compounds have a protective role that is constitutive of the reproductive tissues. However UV-B increases the proportion of valencene, β-farnesene, α-panasinsene and hepatriacontanedione which would require further investigation.


Abiotic stress Grape Ultraviolet-B Terpenes VOCs 



This work was funded by FONCYT (PICT 2008 1666 and PID 0149-PAE 36789) to R.B., and (PICT 2007 02190) to P.P., CONICET (PIP 2008) to P.P., and Sepcyt-UNCuyo to R.B. and P.P. M.G. and M.V.S. are recipient of CONICET scholarships; R.B., F.B. and P.P. are members of CONICET. M.P. is member of INTA. The authors thank the helpful technical assistance of L. Bolcato in GC–EIMS.

Supplementary material

10725_2014_9911_MOESM1_ESM.docx (391 kb)
Supplementary material 1 (DOCX 390 kb)


  1. Aharoni A, Giri AP, Deuerlein S, Griepink F, De Kogel WJ, Verstappen FWA, Verhoeven HA, Jongsma MA, Schwab W, Bouwmeester HJ (2003) Terpenoid metabolism in wild-type and transgenic plants. Plant Cell 15:2866–2884PubMedCrossRefPubMedCentralGoogle Scholar
  2. Beckett M, Loreto F, Velikova V, Brunetti C, Di Ferdinando M, Tattini M, Calfapietra C, Farrant J (2012) Photosynthetic limitations and volatile and non-volatile isoprenoids in the poikilochlorophyllous resurrection plant Xerophyta humilis during dehydration and rehydration. Plant Cell Environ 35:2061–2074PubMedCrossRefGoogle Scholar
  3. Berli FJ, Moreno D, Piccoli P, Hespanhol-Viana L, Silva MF, Bressan-Smith R, Cavagnaro JB, Bottini R (2010) Abscisic acid is involved in the response of grape (Vitis vinifera L.) cv. Malbec leaf tissues to ultraviolet-B radiation by enhancing ultraviolet- absorbing compounds, antioxidant enzymes and membrane sterols. Plant, Cell Environ 33:1–10Google Scholar
  4. Berli FJ, Fanzone M, Piccoli P, Bottini R (2011) Solar UV-B and ABA are involved in phenol metabolism of Vitis vinifera L. increasing biosynthesis of berry skin polyphenols. J Agric Food Chem 59:4874–4883PubMedCrossRefGoogle Scholar
  5. Coelho E, Rocha SM, Delgadillo I, Coimbra MA (2006) Headspace-SPME applied to varietal volatile components evolution during Vitis vinifera L. cv.’Baga’ ripening. Anal Chim Acta 563:204–214CrossRefGoogle Scholar
  6. Coombe BJ (1995) Growth stages of the grapevine: adoption of a system for identifying grapevine growth stages. Aust J Grape Wine Res 1:104–110CrossRefGoogle Scholar
  7. Escoriaza G, Sansberro P, García Lampasona S, Gatica M, Bottini R, Piccoli P (2013) In vitro cultures of Vitis vinifera L. cv. Chardonnay synthesize the phytoalexin nerolidol upon infection by Phaeoacremonium parasiticum. Phytopathol Mediterr 52:289–297Google Scholar
  8. Flint SD, Caldwell MM (1983) Influence of floral optical properties in the ultraviolet radiation environment of pollen. Am J Bot 70:1416–1419CrossRefGoogle Scholar
  9. Gil M, Pontin M, Berli FJ, Bottini R, Piccoli P (2012) Metabolism of terpenes in the response of grape (Vitis vinifera L.) leaf tissues to UV-B radiation. Phytochemistry 77:89–98PubMedCrossRefGoogle Scholar
  10. Gil M, Bottini R, Berli FJ, Pontin M, Silva MF, Piccoli P (2013) Volatile organic compounds characterized from grapevine (Vitis vinifera L. cv. Malbec) berries increase at pre-harvest and in response to UV-B radiation. Phytochemistry 96:148–157PubMedCrossRefGoogle Scholar
  11. Kegger W, Pierik R (2009) Biogenic volatile organic compounds and plant competition. Trends Plant Sci 15:126–131CrossRefGoogle Scholar
  12. Lücker J, Bowen P, Bohlmann J (2004) Vitis vinifera terpenoid cyclases: functional identification of two sesquiterpene synthase cDNAs encoding (+)-valencene synthase and (−)-germacrene D synthase and expression of mono- and sesquiterpene synthases in grapevine flowers and berries. Phytochem 65:2649–2659CrossRefGoogle Scholar
  13. Martin DM, Toub O, Chiang A, Lo BC, Ohse S, Lund ST, Bohlmann J (2009) The bouquet of grapevine (Vitis vinifera L. cv. Cabernet Sauvignon) flowers arises from the biosynthesis of sesquiterpene volatiles in pollen grains. PNAS USA 106:6881–6882CrossRefGoogle Scholar
  14. McKenzie RL, Bjorn LO, Bais A, Ilyasd M (2003) Changes in biologically active UV radiation reaching the earth’s surface. Photochem Photobiol Sci 2:5–15PubMedCrossRefGoogle Scholar
  15. Moreira IC, Lago JHG, Young MCM, Roque NF (2003) Antifungal aromadendrane sesquiterpenoids from the leaves of Xylopia brasiliensis. J Brazil Chem Soc 14:828–831CrossRefGoogle Scholar
  16. Palomo ES, Diaz-Maroto MC, Vinas MAG, Soriano-Pérez A, Pérez-Coello MS (2007) Aroma profile of wines from Albillo and Muscat grape varieties at different stages of ripening. Food Control 18:398–403CrossRefGoogle Scholar
  17. Park SK, Morrison JC, Adams DO, Noble AC (1991) Distribution of free and glycosidically bound monoterpenes in the skin and mesocarp of Muscat of Alexandria grapes during development. J Agric Food Chem 39:514–518CrossRefGoogle Scholar
  18. Petit A, Baillieul F, Vaillant-Gaveau N, Jacquens L, Conreux A, Jeandet P, Clément C, Fontaine F (2009) Low responsiveness of grapevine flowers and berries at fruit set to UV-C irradiation. J Exp Bot 60:1155–1162PubMedCrossRefGoogle Scholar
  19. Pichersky E, Gershenzon J (2002) The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Curr Opin Plant Biol 5:237–243PubMedCrossRefGoogle Scholar
  20. Stranden M, Liblikas I, König WA, Almaas TJ, Borg-Karlson AK, Mustaparta H (2003) (–)-Germacrene D receptor neurones in three species of heliothine moths: structure–activity relationships. J Comp Physiol A 189:563–577CrossRefGoogle Scholar
  21. Teramura AH (2006) Effects of ultraviolet-B radiation on the growth and yield of crop plants. Physiol Plant 58:415–427CrossRefGoogle Scholar
  22. Tholl D, Chen F, Petri J, Gershenzon J, Pichersky E (2005) Two sesquiterpene synthases are responsible for the complex mixture of sesquiterpenes emitted from Arabidopsis flowers. Plant J 42:757–771PubMedCrossRefGoogle Scholar
  23. Uber F (1939) Ultra-violet spectrophotometry of Zea mays pollen with the quartz microscope. Am J Bot 26:799–807CrossRefGoogle Scholar
  24. Wei A, Shibamoto T (2007) Antioxidant activities and volatile constituents of various essential oils. J Agric Food Chem 55:1737–1742PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Mariana Gil
    • 1
  • Rubén Bottini
    • 1
  • Mariela Pontin
    • 1
    • 2
  • Federico J. Berli
    • 1
  • María Victoria Salomon
    • 1
  • Patricia Piccoli
    • 1
  1. 1.Laboratorio de Bioquímica Vegetal, Instituto de Biología Agrícola de MendozaConsejo Nacional de Investigaciones Científicas y Tecnológicas-Universidad Nacional de CuyoChacras de CoriaArgentina
  2. 2.Estación Experimental Agropecuaria La ConsultaInstituto Nacional de Tecnología AgropecuariaLa ConsultaArgentina

Personalised recommendations