Skip to main content
Log in

Partial suppression of l-galactono-1,4-lactone dehydrogenase causes significant reduction in leaf water loss through decreasing stomatal aperture size in Arabidopsis

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

In higher plants, l-galactono-1,4-lactone dehydrogenase (GLDH) participates in the biosynthesis of ascorbic acid (AsA) and the assembly of mitochondrial respiratory complex I. In this work, homozygous Arabidopsis thaliana mutant (gldhRNAi3-11) plants with approximately 40 % of the GLDH activity of wild type (WT) controls were developed by RNA interference, and were found to be viable under standard laboratory conditions. Compared with WT controls, gldhRNAi3-11 plants showed about 20 % decrease in the contents of reduced AsA and total AsA. Like previously recorded for several AsA-deficient mutants (vtc1-1, vtc2-1, vtc3-1 and vtc4-1) grown under long day (LD) conditions, gldhRNAi3-11 plants exhibited an early flowering phenotype in LD environment. Interestingly, relative to WT control, vtc1-1 and vtc4-1, gldhRNAi3-11 had significantly lower leaf water loss rate. Further analysis indicated that reduced stomatal aperture size was likely responsible for the lower water loss displayed by gldhRNAi3-11 leaves. Thus, our work demonstrates that partial suppression of GLDH activity confers significant reduction in leaf water loss through decreasing stomatal aperture size in Arabidopsis. The novel phenotypes displayed by gldhRNAi3-11 plants, the new insights obtained by this work, and their implications on further study of GLDH function in higher plants are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alhagdow M, Mounet F, Gilbert L, Nunes-Nesi A, Garcia V, Just D, Petit J, Beauvoit B, Fernie AR, Rothan C, Baldet P (2007) Silencing of the mitochondrial ascorbate synthesizing enzyme L-galactono-1,4-lactone dehydrogenase affects plant and fruit development in tomato. Plant Physiol 145:1408–1422

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ashraf M (2010) Inducing drought tolerance in plants: recent advances. Biotechnol Adv 28:169–183

    Article  CAS  PubMed  Google Scholar 

  • Barth C, Moeder W, Klessig DF, Conklin PL (2004) The timing of senescence and response to pathogens is altered in the ascorbate-deficient Arabidopsis mutant vitamin c-1. Plant Physiol 134:1784–1792

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bartoli CG, Pastori GM, Foyer CH (2000) Ascorbate biosynthesis in mitochondria is linked to the electron transport chain between complexes III and IV. Plant Physiol 123:335–344

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cerdan PD, Chory J (2003) Regulation of flowering time by light quality. Nature 423:881–885

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Gallie DR (2004) The ascorbic acid redox state controls guard cell signaling and stomatal movement. Plant Cell 16:1143–1162

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen Z, Young TE, Ling J, Chang SC, Gallie DR (2003) Increasing vitamin C content of plants through enhanced ascorbate recycling. Proc Natl Acad Sci USA 100:3525–3530

    Article  CAS  PubMed  Google Scholar 

  • Clarke JM, McCaig TN (1982) Excised-leaf water retention capability as an indicatior of drought resistance of Triticum genotypes. Can J Plant Sci 62:571–578

    Article  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Conklin PL, Barth C (2004) Ascorbic acid, a familiar small molecule intertwined in the response of plants to ozone, pathogens, and the onset of senescence. Plant Cell Environ 27:959–970

    Article  CAS  Google Scholar 

  • Conklin PL, Williams EH, Last RL (1996) Environmental stress sensitivity of an ascorbic acid-deficient Arabidopsis mutant. Proc Natl Acad Sci USA 93:9970–9974

    Article  CAS  PubMed  Google Scholar 

  • Conklin PL, Norris SR, Wheeler GL, Williams EH, Smirnoff N, Last RL (1999) Genetic evidence for the role of GDP-mannose in plant ascorbic acid (vitamin C) biosynthesis. Proc Natl Acad Sci USA 96:4198–4203

    Article  CAS  PubMed  Google Scholar 

  • Conklin PL, Gatzek S, Wheeler GL, Dowdle J, Raymond MJ, Rolinski S, Isupov M, Littlechild JA, Smirnoff N (2006) Arabidopsis thaliana VTC4 encodes L-galactose-1-P phosphatase, a plant ascorbic acid biosynthetic enzyme. J Biol Chem 281:15662–15670

    Article  CAS  PubMed  Google Scholar 

  • Davey MW, Gilot C, Persiau G, Ostergaard J, Han Y, Bauw GC, Van Montagu MC (1999) Ascorbate biosynthesis in Arabidopsis cell suspension culture. Plant Physiol 121:535–543

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Djebbar R, Rzigui T, Petriacq P, Mauve C, Priault P, Fresneau C, De Paepe M, Florez-Sarasa I, Benhassaine-Kesri G, Streb P, Gakiere B, Cornic G, De Paepe R (2012) Respiratory complex I deficiency induces drought tolerance by impacting leaf stomatal and hydraulic conductances. Planta 235:603–614

    Article  CAS  PubMed  Google Scholar 

  • Franks SJ (2011) Plasticity and evolution in drought avoidance and escape in the annual plant Brassica rapa. New Phytol 190:249–257

    Article  PubMed  Google Scholar 

  • Gillespie KM, Ainsworth EA (2007) Measurement of reduced, oxidized and total ascorbate content in plants. Nat Protoc 2:871–874

    Article  CAS  PubMed  Google Scholar 

  • Heazlewood JL, Howell KA, Millar AH (2003) Mitochondrial complex I from Arabidopsis and rice: orthologs of mammalian and fungal components coupled with plant-specific subunits. Biochim Biophys Acta 1604:159–169

    Article  CAS  PubMed  Google Scholar 

  • Helliwell C, Waterhouse P (2003) Constructs and methods for high-throughput gene silencing in plants. Methods 30:289–295

    Article  CAS  PubMed  Google Scholar 

  • Heschel MS, Riginos C (2005) Mechanisms of selection for drought stress tolerance and avoidance in Impatiens capensis (Balsaminaceae). Am J Bot 92:37–44

    Article  PubMed  Google Scholar 

  • Huang C, He W, Guo J, Chang X, Su P, Zhang L (2005) Increased sensitivity to salt stress in an ascorbate-deficient Arabidopsis mutant. J Exp Bot 56:3041–3049

    Article  CAS  PubMed  Google Scholar 

  • Kardailsky I, Shukla VK, Ahn JH, Dagenais N, Christensen SK, Nguyen JT, Chory J, Harrison MJ, Weigel D (1999) Activation tagging of the floral inducer FT. Science 286:1962–1965

    Article  CAS  PubMed  Google Scholar 

  • Kempinski CF, Haffar R, Barth C (2011) Toward the mechanism of NH4 + sensitivity mediated by Arabidopsis GDP-mannose pyrophosphorylase. Plant Cell Environ 34:847–858

    Article  CAS  PubMed  Google Scholar 

  • Kotchoni SO, Larrimore KE, Mukherjee M, Kempinski CF, Barth C (2009) Alterations in the endogenous ascorbic acid content affect flowering time in Arabidopsis. Plant Physiol 149:803–815

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ludlow MM (1989) Strategies of response to water stress. In: Kreeb KH, Richter H, Hinckley TM (eds) Structural and functional responses to environmental stresses. SPB Academic, The Hague, pp 269–281

    Google Scholar 

  • Moore JP, Vicre-Gibouin M, Farrant JM, Driouich A (2008) Adaptations of higher plant cell walls to water loss: drought vs desiccation. Physiol Plant 134:237–245

    Article  CAS  PubMed  Google Scholar 

  • Oba K, Ishikawa S, Nishikawa M, Mizuno H, Yamamoto T (1995) Purification and properties of L-galactono-gamma-lactone dehydrogenase, a key enzyme for ascorbic acid biosynthesis, from sweet potato roots. J Biochem 117:120–124

    CAS  PubMed  Google Scholar 

  • Ostergaard J, Persiau G, Davey MW, Bauw G, Van Montagu M (1997) Isolation of a cDNA coding for L-galactono-gamma-lactone dehydrogenase, an enzyme involved in the biosynthesis of ascorbic acid in plants. Purification, characterization, cDNA cloning, and expression in yeast. J Biol Chem 272:30009–30016

    Article  CAS  PubMed  Google Scholar 

  • Pineau B, Layoune O, Danon A, De Paepe R (2008) L-galactono-1,4-lactone dehydrogenase is required for the accumulation of plant respiratory complex I. J Biol Chem 283:32500–32505

    Article  CAS  PubMed  Google Scholar 

  • Qin C, Qian W, Wang W, Wu Y, Yu C, Jiang X, Wang D, Wu P (2008) GDP-mannose pyrophosphorylase is a genetic determinant of ammonium sensitivity in Arabidopsis thaliana. Proc Natl Acad Sci USA 105:18308–18313

    Article  CAS  PubMed  Google Scholar 

  • Smirnoff N (2001) L-ascorbic acid biosynthesis. Vitam Horm 61:241–266

    Article  CAS  PubMed  Google Scholar 

  • Tabata K, Oba K, Suzuki K, Esaka M (2001) Generation and properties of ascorbic acid-deficient transgenic tobacco cells expressing antisense RNA for L-galactono-1,4-lactone dehydrogenase. Plant J 27:139–148

    Article  CAS  PubMed  Google Scholar 

  • Umezawa T, Fujita M, Fujita Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Curr Opin Biotechnol 17:113–122

    Article  CAS  PubMed  Google Scholar 

  • Verslues PE, Agarwal M, Katiyar-Agarwal S, Zhu J, Zhu JK (2006) Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J 45:523–539

    Article  CAS  PubMed  Google Scholar 

  • Wesley SV, Helliwell CA, Smith NA, Wang MB, Rouse DT, Liu Q, Gooding PS, Singh SP, Abbott D, Stoutjesdijk PA, Robinson SP, Gleave AP, Green AG, Waterhouse PM (2001) Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J 27:581–590

    Article  CAS  PubMed  Google Scholar 

  • Wheeler GL, Jones MA, Smirnoff N (1998) The biosynthetic pathway of vitamin C in higher plants. Nature 393:365–369

    Article  CAS  PubMed  Google Scholar 

  • Winter SR, Musick JT, Porter KB (1988) Evaluation of screening techniques for breeding drought-resistant winter wheat. Crop Sci 28:512–516

    Article  Google Scholar 

Download references

Acknowledgments

We wish to thank Professor Peter M. Waterhouse (CSIRO Plant Industry, Canberra, Australia) for permission to use the pKANNIBAL and pART27 vectors. This work was supported by the National Natural Science Foundation of China (grant 30821061) (to D.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daowen Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 28 kb)

Supplementary material 2 (DOC 32 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, B., Yang, Y., Yu, C. et al. Partial suppression of l-galactono-1,4-lactone dehydrogenase causes significant reduction in leaf water loss through decreasing stomatal aperture size in Arabidopsis . Plant Growth Regul 72, 171–179 (2014). https://doi.org/10.1007/s10725-013-9849-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-013-9849-9

Keywords

Navigation