Skip to main content
Log in

UV-irradiation enhances rice allelopathic potential in rhizosphere soil

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Ultraviolet-B radiation is rising continuously due to stratospheric ozone depletion over temperate latitudes. This study investigated effects of UV exposure on rice allelopathic potentials. For this purpose, two rice (Oryza sativa L.) cultivars BR-41 (high allelopathic = able to inhibit neighboring plants in native environment) and Huajingxian (low allelopathic = not able to inhibit neighboring plants, which were suppressed by higher allelopathic plants) were exposed to UV. Rhizosphere soils and leaf leachates bioassay were used to evaluate allelopathic potentials against receiver plants (barnyard grass and lettuce). These bioassays showed significant inhibition in lettuce and barnyard growth after UV in both rice cultivars. Interestingly, Huajingxian, which did not exhibit allelopathic potential in absence of UV showed significant inhibition after UV exposure. Phenolics, enzymes activities and genes responsible for biosynthesis of allelopathic compounds were examined after UV exposure. Phenolic compounds accumulated in rice leaves were quantified through HPLC analysis. They were significantly higher in BR-41 leaves after UV exposure. Enzyme activities (PAL and C4H) were significantly higher after UV exposure. The relative transcripts of genes (OsPAL and OsCYC1) responsible for biosynthesis of allelopathic compounds were also significantly higher after UV exposure. These results suggest that enhanced UV-irradiation levels due to ozone depletion may increase rice allelopathic potentials on paddy weeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

UV:

Ultraviolet radiation

PAL:

Phenylalanine ammonia-lyase

C4H:

Cinnamate 4-hydroxylase

HPLC:

High performance liquid chromatography

References

  • Achnine L, Blancaflor EB, Rasmussen S, Dixon RA (2004) Colocalization of l-phenylalanine ammonia-lyase and cinnarnate 4-hydroxylase for metabolic channeling in phenylpropanoid biosynthesis. Plant cell 16(11):3098–3109

    Article  PubMed  CAS  Google Scholar 

  • Bais HP, Park SW, Weir TL, Callaway RM, Vivanco JM (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9(1):26–32. doi:10.1016/j.tplants.2003.11.008

    Article  PubMed  CAS  Google Scholar 

  • Ballare CL, Caldwell MM, Flint SD, Robinson SA, Bornman JF (2011) Effects of solar ultraviolet radiation on terrestrial ecosystems. Patterns, mechanisms, and interactions with climate change. Photochem Photobiol Sci 10(2):226–241. doi:10.1039/c0pp90035d

    Article  PubMed  CAS  Google Scholar 

  • Barnes PW, Flint SD, Caldwell MM (1995) Early season effects of supplemented solar UV-B radiation on seedling emergence, canopy structure, simulated stand photosynthesis and competition for light. Global Change Biol 1(1):43–53

    Article  Google Scholar 

  • Bi HH, Zeng RS, Su LM, An M, Luo SM (2007) Rice allelopathy induced by methyl jasmonate and methyl salicylate. J Chem Ecol 33(5):1089–1103. doi:10.1007/s10886-007-9286-1

    Article  PubMed  CAS  Google Scholar 

  • Chou C-H, Lin H-J (1976) Autointoxication mechanism of Oryza sativa L. phytotoxic effects of decomposing rice residues in soil. J Chem Ecol 2(3):353–367. doi:10.1007/bf00988282

    Article  CAS  Google Scholar 

  • Chung IM, Ahn JK, Yun SJ (2001) Identification of allelopathic compounds from rice (Oryza sativa L.) straw and their biological activity. Can J Plant Sci 81(4):815–819

    Article  CAS  Google Scholar 

  • Collinge DB, Slusarenko AJ (1987) Plant gene expression in response to pathogens. Plant Mol Biol 9(4):389–410

    Article  CAS  Google Scholar 

  • Creelman RA, Mullet JE (1997) Biosynthesis and action of jasmonates in plants. Annu Rev Plant Physiol Plant Mol Biol 48:355–381. doi:10.1146/annurev.arplant.48.1.355

    Article  PubMed  CAS  Google Scholar 

  • de Kroon H (2007) How do roots interact? Science 318(5856):1562–1563. doi:10.1126/science.1150726

    Article  PubMed  Google Scholar 

  • Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant cell 7(7):1085–1097. doi:10.1105/tpc.7.7.1085

    PubMed  CAS  Google Scholar 

  • Dixon RA, Sumner LW (2003) Legume natural products: understanding and manipulating complex pathways for human and animal health. Plant Physiol 131(3):878–885. doi:10.1104/pp.102.017319

    Article  PubMed  CAS  Google Scholar 

  • Ebana K, Yan WG, Dilday RH, Namai H, Okuno K (2001) Analysis of QTL associated with the allelopathic effect of rice using water-soluble extracts. Breed Sci 51(1):47–51

    Article  CAS  Google Scholar 

  • Farman JC, Gardiner BG, Shanklin JD (1985) Large losses of total ozone in Antarctica reveal seasonal clox/nox interaction. Nature 315(6016):207–210

    Article  CAS  Google Scholar 

  • Fujii Y, Furubayashi A, Hiradate S, Harper JDI, An M, Wu, H and Kent JH (2005). Rhizosphere soil method: a new bioassay to evaluate allelopathy in the field. In Proceedings of the 4th world congress on allelopathy, Establishing the scientific base, Wagga Wagga, Australia, 21–26 August 2005, Centre for Rural Social Research, Charles Sturt University, pp 490–492

  • Garrity DP, Movillon M, Moody K (1992) Differential weed suppression ability in upland rice cultivars. Agron J 84(4):586–591

    Article  Google Scholar 

  • Gehrke C, Johanson U, Callaghan TV, Chadwick D, Robinson CH (1995) The impact of enhanced ultraviolet-b radiation on litter quality and decomposition processes in vaccinium leaves from the sub-arctic. Oikos 72(2):213–222

    Article  Google Scholar 

  • Gurr SJ, McPherson MJ, Bowles DJ (1992) Molecular plant pathology. A practical approach. Volume II. Irl Press at Oxford University Press

  • Hammerschmidt R (1999) Phytoalexins: what have we learned after 60 years? Annu Rev Phytopathol 37:285–306

    Article  PubMed  CAS  Google Scholar 

  • Hawes MC, Gunawardena U, Miyasaka S, Zhao X (2000) The role of root border cells in plant defense. Trends Plant Sci 5(3):128–133

    Article  PubMed  CAS  Google Scholar 

  • He HQ, Shen LH, Xiong J, Jia XL, Lin WX, Wu H (2004) Conditional genetic effect of allelopathy in rice (Oryza sativa L.) under different environmental conditions. Plant Growth Regul 44(3):211–218. doi:10.1007/s10725-004-5107-5

    Article  CAS  Google Scholar 

  • Huang SB, Dai QJ, Peng SB, Chavez AQ, Miranda LL, Visperas RM, Vergara BS (1997) Influence of supplemental ultraviolet-B on indoleacetic acid and calmodulin in the leaves of rice (Oryza sativa L). Plant Growth Regul 21(1):59–64

    Article  CAS  Google Scholar 

  • Inderjit D, Dakshini KMM (1995) On laboratory bioassays in allelopathy. Bot Rev 61(1):28–44

    Article  Google Scholar 

  • Inderjit Z, Weston LA (2000) Are laboratory bioassays for allelopathy suitable for prediction of field responses? J Chem Ecol 26(9):2111–2118

    Article  CAS  Google Scholar 

  • Jagger J (1981) Near-UV radiation effects on microorganisms. Photochem Photobiol 34(6):761–768

    PubMed  CAS  Google Scholar 

  • Jensen LB, Courtois B, Shen L, Li Z, Olofsdotter M, Mauleon RP (2001) Locating genes controlling allelopathic effects against barnyardgrass in upland rice. Agron J 93(1):21–26. doi:10.2134/agronj2001.93121x

    Article  CAS  Google Scholar 

  • Jung YH, Lee JH, Agrawal GK, Rakwal R, Kim JA, Shim JK, Lee SK, Jeon JS, Koh HJ, Lee YH, Iwahashi H, Jwa NS (2005) The rice (Oryza sativa) blast lesion mimic mutant, blm, may confer resistance to blast pathogens by triggering multiple defense-associated signaling pathways. Plant Physiol Biochem 43(4):397–406. doi:10.1016/j.plaphy.2005.03.002

    Article  PubMed  CAS  Google Scholar 

  • Karban R (2007) Experimental clipping of sagebrush inhibits seed germination of neighbours. Ecol Lett 10:791–797. doi:10.1111/j.1461-0248.2007.01068.x

    Article  PubMed  Google Scholar 

  • Kato-Noguchi H (2004) Allelopathic substance in rice root exudates: rediscovery of momilactone B as an allelochemical. J Plant Physiol 161(3):271–276

    Article  PubMed  CAS  Google Scholar 

  • Kato-Noguchi H, Ino T (2003) Rice seedlings release momilactone B into the environment. Phytochemistry 63(5):551–554. doi:10.1016/s0031-9422(03)00194-8

    Article  PubMed  CAS  Google Scholar 

  • Kato-Noguchi H, Ino T, Sata N, Yamamura S (2002) Isolation and identification of a potent allelopathic substance in rice root exudates. Physiol Plant 115(3):401–405

    Article  PubMed  CAS  Google Scholar 

  • Kato-Noguchi H, Kujime H, Ino T (2007) UV-induced momilactone B accumulation in rice rhizosphere. J Plant Physiol 164(11):1548–1551. doi:10.1016/j.jplph.2006.12.008

    Article  PubMed  CAS  Google Scholar 

  • Kessler A, Baldwin IT (2002) Plant responses to insect herbivory: the emerging molecular analysis. Annu Rev Plant Biol 53:299–328. doi:10.1146/annurev.arplant.53.100301.135207

    Article  PubMed  CAS  Google Scholar 

  • Kim SY, Madrid AV, Park ST, Yang SJ, Olofsdotter M (2005) Evaluation of rice allelopathy in hydroponics. Weed Res 45(1):74–79

    Article  Google Scholar 

  • Klironomos JN, Allen MF (1995) UV-B-mediated changes on below-ground communities associated with the roots of Acer saccharum. Funct Ecol 9(6):923–930

    Article  Google Scholar 

  • Kodama O, Suzuki T, Miyakawa J, Akatsuka T (1988) Ultraviolet-induced accumulation of phytoalexins in rice leaves. Agric Biol Chem 52(10):2469–2473

    Article  CAS  Google Scholar 

  • Lamb CJ, Rubery PH (1975) A spectrophotometric assay for trans-cinnamic acid 4-hydroxylase activity. Anal biochem 68(2):554–561

    Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods 25(4):402–408. doi:10.1006/meth.2001.1262

    Article  PubMed  CAS  Google Scholar 

  • Madronich S, McKenzie RL, Bjorn LO, Caldwell MM (1998) Changes in biologically active ultraviolet radiation reaching the earth’s surface. J Photochem Photobiol B-Biol 46(1–3):5–19

    Article  CAS  Google Scholar 

  • McCloud ES, Berenbaum MR (1994) Stratospheric ozone depletion and plant-insect interactions - effects of uvb radiation on foliage quality of citrus-jambhiri for trichoplusia ni. J Chem Ecol 20(3):525–539

    Article  CAS  Google Scholar 

  • McCully ME (1999) Roots in soil: unearthing the complexities of roots and their rhizospheres. Annu Rev Plant Physiol Plant Mol Biol 50:695–718

    Google Scholar 

  • Olofsdotter M (ed) (1998) Allelopathy in rice. International Rice Research Institute, Manila, Philippines

  • Olofsdotter M, Navarez D, Moody K (1995) Allelopathic potential in rice (Oryza sativa L) germplasm. Ann Appl Biol 127(3):543–560

    Article  Google Scholar 

  • Otomo K, Kenmoku H, Oikawa H, Konig WA, Toshima H, Mitsuhashi W, Yamane H, Sassa T, Toyomasu T (2004) Biological functions of ent- and syn-copalyl diphosphate synthases in rice: key enzymes for the branch point of gibberellin and phytoalexin biosynthesis. Plant J. 39(6):886–893. doi:10.1111/j.1365-313X.2004.02175.x

    Article  PubMed  CAS  Google Scholar 

  • Paul ND, Gwynn-Jones D (2003) Ecological roles of solar UV radiation: towards an integrated approach. Trends Ecol Evol 18(1):48–55

    Article  Google Scholar 

  • Peters RJ, Croteau RB (2004) Metabolic engineering of plant secondary metabolism. In G Kishore (ed) Handbook of plant biotechnology: Applications of plant biotechnology in agriculture, the pharmaceutical industry, and other industries, vol 2. Wiley, London, pp 609–628

  • Predieri S, Krizek DT, Wang CY, Mirecki RM, Zimmerman RH (1993) Influence of uv-b radiation on developmental-changes, ethylene, co2 flux and polyamines in CV - Doyenne dhiver pear shoots grown-invitro. Physiol Plant 87(2):109–117

    Article  CAS  Google Scholar 

  • Rice EL (1984) Allelopathy, 2nd edn. Academic Press, New York

  • Ros J, Tevini M (1995) Interaction of uv-radiation and iaa during growth of seedlings and hypocotyl segments of sunflower. J Plant Physiol 146(3):295–302

    Article  CAS  Google Scholar 

  • Rousseaux MC, Ballare CL, Scopel AL, Searles PS, Caldwell MM (1998) Solar ultraviolet-B radiation affects plant-insect interactions in a natural ecosystem of Tierra del Fuego (southern Argentina). Oecologia 116(4):528–535

    Article  Google Scholar 

  • Seal AN, Pratley JE, Haig T, An M (2004) Identification and quantitation of compounds in a series of allelopathic and non-allelopathic rice root exudates. J Chem Ecol 30(8):1647–1662. doi:10.1023/b:joec.0000042074.96036.14

    Article  PubMed  CAS  Google Scholar 

  • Shimura K, Okada A, Okada K, Jikumaru Y, Ko KW, Toyomasu T, Sassa T, Hasegawa M, Kodama O, Shibuya N, Koga J, Nojiri H, Yamane H (2007) Identification of a biosynthetic gene cluster in rice for momilactones. J Biol Chem 282(47):34013–34018. doi:10.1074/jbc.M703344200

    Article  PubMed  CAS  Google Scholar 

  • Teramura AH, Sullivan JH (1994) Effects of uv-b radiation on photosynthesis and growth of terrestrial plants. Photosynth Res 39(3):463–473

    Article  CAS  Google Scholar 

  • Wilderman PR, Xu MM, Jin YH, Coates RM, Peters RJ (2004) Identification of syn-pimara-7, 15-diene synthase reveals functional clustering of terpene synthases involved in rice phytoalexin/allelochemical biosynthesis. Plant Physiol 135(4):2098–2105. doi:10.1104/pp.104.045971

    Article  PubMed  CAS  Google Scholar 

  • Wu JY, Lin LD (2002) Ultrasound-induced stress responses of Panax ginseng cells: enzymatic browning and phenolics production. Biotechnol Prog 18(4):862–866. doi:10.1021/bp0255210

    Article  PubMed  CAS  Google Scholar 

  • Zeng Dali, Qian Q, Teng Sheng, Dong Guojun, Fujimoto H, Yasufumi Kunihifo, Zhu Lihuang (2003) Genetic analysis of rice allelopathy, vol 48, vol 3. Springer, Heidelberg

    Google Scholar 

  • Zeng RS, Mallik AU, Luo SM (2008) Allelopathy in sustainable agriculture and forestry. Springer, Berlin

    Book  Google Scholar 

  • Zhang XH, Zhang EH, Lang DY (2011) Autotoxic compounds from rhizosphere soil of Humulus lupulus L. extracts: identification and biological activity. Agron J 103(3):695–701. doi:10.2134/agronj2010.0425

    Article  CAS  Google Scholar 

  • Zoń J, Amrhein N (1992) Inhibitors of phenylalanine ammonia-lyase-2-aminoindan-2-phosphonic acid and related compounds. Liebigs Annalen der Chemie (6):625–628

Download references

Acknowledgments

This research was financially supported by the National 973 project of China (2011CB100400), National Natural Science Foundation of China (31070388, 31028018, 30870390), Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme (2010), Guangdong Science and Technology Plan Project (2008A030101008, 2008B021500001) and Ph.D. Programs Foundation of the Ministry of Education of China (20104404110004) and Ministry of Education Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalid Mahmood.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahmood, K., Khan, M.B., Song, Y.Y. et al. UV-irradiation enhances rice allelopathic potential in rhizosphere soil. Plant Growth Regul 71, 21–29 (2013). https://doi.org/10.1007/s10725-013-9804-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-013-9804-9

Keywords

Navigation