Abstract
Several regulatory steps and genes involved in fruit development were identified and characterized in Arabidopsis thaliana. FRUITFULL (FUL) and SHATTERPROOF (SHP), which belong to the MADS-box family of transcription factors, act together to promote the differentiation of the dehiscence zone and thus control the process of pod shattering in Arabidopsis. Homologs to these genes have been described in fleshy fruit species, but the specific nature of the regulatory hierarchy and interactions among these key regulators remains elusive in most plant species. Here, Citrus sinensis putative orthologs to FUL and SHP, named CsFUL and CsSHP respectively, were characterized. Phylogenetic comparisons indicated that CsFUL belongs to FRUITFUL sub-clade within the AP1/SQUA major clade while CsSHP falls into PLENA sub-clade from the AG/PLE clade. CsFUL and CsSHP protein sequences possess all of the characteristic conserved domains commonly found in A- and C-lineages of MIKC MADS-box proteins, respectively. Semi-quantitative RT-PCR showed preferential expression of both genes in developing fruits. In situ hybridization and a detailed analysis of Citrus fruit development using scanning electron microscopy allowed further characterization of these genes during C. sinensis fruit development. CsFUL and CsSHP are differentially expressed in exocarp, mesocarp and endocarp tissues in early stages of fruit development but their expression diminishes with fruit maturation. Moreover, the co-localization of CsFUL and CsSHP mRNA during oil glands and juice vesicle formation suggests a potential role in the development of such structures. Altogether, there results might contribute to a better understanding of the molecular mechanisms involved in Citrus fruit development.





Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Bain J (1958) Morphological, anatomical, and physiological changes in the developing fruit of the Valencia orange, Citrus sinensis (L) Osbeck. Aust J Bot 6(1):1–23. doi:10.1071/BT9580001
Becker A, Theissen G (2003) The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol Phylogenet Evol 29(3):464–489. doi:10.1016/S1055-7903(03)00207-0
Bennici A, Tani C (2004) Anatomical and ultrastructural study of the secretory cavity development ofCitrus sinensis and Citrus limon: evaluation of schizolysigenous ontogeny flora—morphology, distribution. Funct Ecol Plan 199(6):464–475
Busi MV, Bustamante C, D’Angelo C, Hidalgo-Cuevas M, Boggio SB, Valle EM, Zabaleta E (2003) MADS-box genes expressed during tomato seed and fruit development. Plant Mol Biol 52(4):801–815. doi:10.1023/A:1025001402838
Causier B, Castillo R, Zhou J, Ingram R, Xue Y, Schwarz-Sommer Z, Davies B (2005) Evolution in action: following function in duplicated floral homeotic genes. Curr Biol 15(16):1508–1512. doi:10.1016/j.cub.2005.07.063
Colombo M, Brambilla V, Marcheselli R, Caporali E, Kater MM, Colombo L (2010) A new role for the SHATTERPROOF genes during Arabidopsis gynoecium development. Dev Biol 337(2):294–302. doi:10.1016/j.ydbio.2009.10.043
Dardick CD, Callahan AM, Chiozzotto R, Schaffer RJ, Piagnani MC, Scorza R (2010) Stone formation in peach fruit exhibits spatial coordination of the lignin and flavonoid pathways and similarity to Arabidopsis dehiscence. BMC Biol 8:13. doi:10.1186/1741-7007-8-13
Dias BFdO, Simões-Araújo JL, Russo CAM, Margis R, Alves-Ferreira M (2005) Unravelling MADS-box gene family in Eucalyptus spp.: a starting point to an understanding of their developmental role in trees. Genet Mol Biol 28:501–510. doi:10.1590/S1415-47572005000400004
Dinneny JR, Yanofsky MF (2005) Drawing lines and borders: how the dehiscent fruit of Arabidopsis is patterned. BioEssays 27(1):42–49. doi:10.1002/Bies.20165
Dinneny JR, Weigel D, Yanofsky MF (2005) A genetic framework for fruit patterning in Arabidopsis thaliana. Development 132(21):4687–4696. doi:10.1242/dev.02062
Dornelas MC, Camargo RLB, Berger IJ, Takita MA (2007a) Towards the identification of flower-specific genes in Citrus spp. Genet Mol Biol 30:761–768. doi:10.1590/S1415-47572007000500005
Dornelas MC, Camargo RLB, Figueiredo LHM, Takita MA (2007b) A genetic framework for flowering-time pathways in Citrus spp. Genet Mol Biol 30:769–779. doi:10.1590/S1415-47572007000500006
Endo T, Shimada T, Fujii H, Omura M (2006) Cloning and characterization of 5 MADS-box cDNAs isolated from citrus fruit tissue. Sci Hortic 109(4):315–321. doi:10.1016/j.scienta.2006.06.008
Ferrandiz C, Pelaz S, Yanofsky MF (1999) Control of carpel and fruit development in Arabidopsis. Ann Rev Biochem 68:321–354. doi:10.1146/annurev.biochem.68.1.321
Ferrandiz C, Liljegren SJ, Yanofsky MF (2000) Negative regulation of the SHATTERPROOF genes by FRUITFULL during Arabidopsis fruit development. Science 289(5478):436–438. doi:10.1126/science.289.5478.436
Flanagan CA, Hu Y, Ma H (1996) Specific expression of the AGL1 MADS-box gene suggests regulatory functions in Arabidopsis gynoecium and ovule development. Plant J 10(2):343–353. doi:10.1046/j.1365-313X.1996.10020343.x
Gimenez E, Pineda B, Capel J, Anton MT, Atares A, Perez-Martin F, Garcia-Sogo B, Angosto T, Moreno V, Lozano R (2010) Functional analysis of the Arlequin mutant corroborates the essential role of the Arlequin/TAGL1 gene during reproductive development of tomato. PLoS ONE 5(12):e14427. doi:10.1371/journal.pone.0014427
Giovannoni J (2001) Molecular biology of fruit maturation and ripening. Ann Rev Plant Physiol Plant Mol Biol 52:725–749. doi:10.1146/annurev.arplant.52.1.725
Giovannoni JJ (2004) Genetic regulation of fruit development and ripening. Plant Cell 16(Suppl):S170–S180. doi:10.1105/tpc.019158
Giovannoni JJ (2007) Fruit ripening mutants yield insights into ripening control. Curr Opin Plant Biol 10(3):283–289. doi:10.1016/j.pbi.2007.04.008
Gu Q, Ferrandiz C, Yanofsky MF, Martienssen R (1998) The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development. Development 125(8):1509–1517
Higgins DG (1994) CLUSTAL V: multiple alignment of DNA and protein sequences. Meth Mol Biol 25:307–318. doi:10.1385/0-89603-276-0:307
Huang X (1992) A contig assembly program based on sensitive detection of fragment overlaps. Genomics 14(1):18–25. doi:10.1016/S0888-7543(05)80277-0
Itkin M, Seybold H, Breitel D, Rogachev I, Meir S, Aharoni A (2009) TOMATO AGAMOUS-LIKE 1 is a component of the fruit ripening regulatory network. Plant J 60(6):1081–1095. doi:10.1111/j.1365-313X.2009.04064.x
Jager M, Hassanin A, Manuel M, Le Guyader H, Deutsch J (2003) MADS-box genes in Ginkgo biloba and the evolution of the AGAMOUS family. Mol Biol Evol 20(5):842–854. doi:10.1093/molbev/msg089
Kaufmann K, Melzer R, Theissen G (2005) MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants. Gene 347(2):183–198. doi:10.1016/j.gene.2004.12.014
Kidner C, Timmermans M (2006) In situ hybridization as a tool to study the role of microRNAs in plant development. Methods Mol Biol 342:159–179. doi:10.1385/1-59745-123-1:159
Knight TG, Klieber A, Sedgley M (2001) The relationship between oil gland and fruit development in Washington Navel orange (Citrus sinensis L. Osbeck). Ann Bot London 88 (6):1039–1047. doi:10.1006/anbo.2001.1546
Laskowski LE, Garcia-Luis A, Torres J (2006) Desarrollo del fruto del Citrus Sinensis var. Salustiana Bioagro 18(1):15–23
Leseberg CH, Li A, Kang H, Duvall M, Mao L (2006) Genome-wide analysis of the MADS-box gene family in Populus trichocarpa. Gene 378:84–94. doi:10.1016/j.gene.2006.05.022
Liljegren SJ, Ditta GS, Eshed Y, Savidge B, Bowman JL, Yanofsky MF (2000) SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature 404(6779):766–770. doi:10.1038/35008089
Lozano R, Gimenez E, Cara B, Capel J, Angosto T (2009) Genetic analysis of reproductive development in tomato. Int J Dev Biol 53(8–10):1635–1648. doi:10.1387/ijdb.072440rl
Mandel MA, Yanofsky MF (1995) The Arabidopsis AGL8 MADS box gene is expressed in inflorescence meristems and is negatively regulated by APETALA1. Plant Cell 7(11):1763–1771. doi:10.1105/tpc.7.11.1763
Muñoz-Fambuena N, Mesejo C, Gonzalez-Mas MC, Primo-Millo E, Agusti M, Iglesias DJ (2011) Fruit regulates seasonal expression of flowering genes in alternate-bearing ‘Moncada’ mandarin. Ann Bot 108(3):511–519. doi:10.1093/aob/mcr164
Muñoz-Fambuena N, Mesejo C, González-Mas M, Iglesias D, Primo-Millo E, Agustí M (2012) Gibberellic Acid Reduces Flowering Intensity in Sweet Orange [Citrus sinensis (L.) Osbeck] by Repressing CiFT Gene Expression. J Plant Growth Regul: 1–8. doi:10.1007/s00344-012-9263-y
Ostergaard L (2009) Don’t ‘leaf’ now. The making of a fruit. Curr Opin Plant Biol 12(1):36–41. doi:10.1016/j.pbi.2008.09.011
Pan IL, McQuinn R, Giovannoni JJ, Irish VF (2010) Functional diversification of AGAMOUS lineage genes in regulating tomato flower and fruit development. J Exp Bot 61(6):1795–1806. doi:10.1093/jxb/erq046
Parenicova L, de Folter S, Kieffer M, Horner DS, Favalli C, Busscher J, Cook HE, Ingram RM, Kater MM, Davies B, Angenent GC, Colombo L (2003) Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world. Plant Cell 15(7):1538–1551. doi:10.1105/tpc.011544
Riechmann JL, Meyerowitz EM (1997) MADS domain proteins in plant development. Biol Chem 378(10):1079–1101
Robles P, Pelaz S (2005) Flower and fruit development in Arabidopsis thaliana. Int J Dev Biol 49(5–6):633–643. doi:10.1387/ijdb.052020pr
Roeder AHK, Yanofsky MF (2006) The Arabidopsis Book. Fruit Develop Arabidopsis. doi:10.1199/tab.0075
Roth I (1977) Fruits of Angiosperms. In: Zimmmermann W, Carlquist S, Ozenda P (eds) Encyclopedia of Plant Anatomy, vol 10. Gebrüder Borntraeger, Berlin, p 39
Savidge B, Rounsley SD, Yanofsky MF (1995) Temporal relationship between the transcription of two Arabidopsis MADS box genes and the floral organ identity genes. Plant Cell 7(6):721–733. doi:10.1105/tpc.7.6.721
Schneider H (1968) The Anatomy of Citrus. In: Reuther, Batchelor, Webber (eds) The Citrus Industry, vol 1. University of California, Division of Agricultural Sciences, Riverside, pp 1–85
Seymour G, Poole M, Manning K, King GJ (2008) Genetics and epigenetics of fruit development and ripening. Curr Opin Plant Biol 11(1):58–63. doi:10.1016/j.pbi.2007.09.003
Tadiello A, Pavanello A, Zanin D, Caporali E, Colombo L, Rotino GL, Trainotti L, Casadoro G (2009) A PLENA-like gene of peach is involved in carpel formation and subsequent transformation into a fleshy fruit. J Exp Bot 60(2):651–661. doi:10.1093/jxb/ern313
Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24(8):1596–1599. doi:10.1093/molbev/msm092
Tan FC, Swain SM (2007) Functional characterization of AP3, SOC1 and WUS homologues from citrus (Citrus sinensis). Physiol Plant 131(3):481–495. doi:10.1111/j.1399-3054.2007.00971.x
Tani E, Polidoros AN, Tsaftaris AS (2007) Characterization and expression analysis of FRUITFULL- and SHATTERPROOF-like genes from peach (Prunus persica) and their role in split-pit formation. Tree Physiol 27(5):649–659. doi:10.1093/treephys/27.5.649
Targon MLPN, Takita MA, Amaral AMd, Souza AAd, Locali-Fabris EC, Dorta SdO, Borges KM, Souza JMd, Rodrigues CM, Lucheta AR, Freitas-Astúa J, Machado MA (2007) CitEST libraries. Genet Mol Biol 30:1019–1023. doi:10.1590/S1415-47572007000500030
Theissen G, Becker A, Di Rosa A, Kanno A, Kim JT, Munster T, Winter KU, Saedler H (2000) A short history of MADS-box genes in plants. Plant Mol Biol 42(1):115–149. doi:10.1023/A:1006332105728
Vrebalov J, Pan IL, Arroyo AJ, McQuinn R, Chung M, Poole M, Rose J, Seymour G, Grandillo S, Giovannoni J, Irish VF (2009) Fleshy fruit expansion and ripening are regulated by the Tomato SHATTERPROOF gene TAGL1. Plant Cell 21(10):3041–3062. doi:10.1105/tpc.109.066936
Acknowledgments
The authors thank Prof. E.W. Kitajima and Prof. F.A.O. Tanaka at NAP/MEPA/ESALQ-USP for the scanning electron microscope facilities and Prof. S.M. Tsai (CENA/USP) for sequencing facilities. This work received financial support from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brazil), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, São Paulo, Brazil) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil).
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Araújo, P., Cesarino, I., Carmello-Guerreiro, S.M. et al. Citrus sinensis L. Osbeck orthologs of FRUITFULL and SHATTERPROOF are differentially expressed during fruit development. Plant Growth Regul 70, 1–13 (2013). https://doi.org/10.1007/s10725-012-9773-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10725-012-9773-4


