Skip to main content
Log in

Glucose-6-phosphate dehydrogenase acts as a regulator of cell redox balance in rice suspension cells under salt stress

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The reduced coenzyme nicotinamide-adenine dinucleotide phosphate (NADPH) is an important molecule in cellular redox balance. Glucose-6-phosphate dehydrogenase (G6PDH) is a key enzyme in the pentose phosphate pathway, the most important NADPH-generating pathway. In this study, roles of G6PDH in maintaining cell redox balance in rice suspension cells under salt stress were investigated. Results showed that the G6PDH activity decreased in the presence of 80 mM NaCl on day 2. Application of exogenous glucose stimulated the activity of G6PDH and NADPH oxidase under salt stress. Exogenous glucose also increased the ion leakage, thiobarbituric acid reactive substances and hydrogen peroxide (H2O2) contents in the presence of 80 mM NaCl on day 2, implying that the reduction of the G6PDH activity was necessary to avoid serious damage caused by salt stress. The NAPDH/NADP+ ratio increased on day 2 but decreased on day 4 under 80 mM NaCl plus glucose treatment. Diphenyleneiodonium, an NADPH oxidase inhibitor, decreased the H2O2 content under 80 mM NaCl treatment on day 2. These results imply that the H2O2 accumulation induced by glucose treatment under salt stress on day 2 was related to the NADPH oxidase. Western-blot analysis showed that the G6PDH expression was slightly induced by glucose and was obviously blocked by DPI on day 2 under salt stress. In conclusion, G6PDH plays a key role in maintaining the cell redox balance in rice suspension cells under salt stress. The coordination of G6PDH and NADPH oxidase is required in maintaining cell redox balance in salt tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

6PGDH:

6-Phosphogluconate dehydrogenase

APX:

Ascorbate peroxidase

ASC:

Ascorbic acid

DHEA:

Dehydroepiandrosterone

DMAB:

Dimethylamine broane

DPI:

Diphenyleneiodonium

DTT:

Dithiothreitol

EDTA:

Ethylenediaminetetraacetic acid

G6PDH:

Glucose-6-phosphate dehydrogenase

H2O2 :

Hydrogen peroxide

Hepes-Tris:

N-2-Hydroxyethylpiperazine-N-2-ethanesulfonic acid-tris

MBTH:

3-Methyl-2-benzothiazolinonehydrazone hydrochlide hydrate

NADPH:

Nicotinamide-adenine dinucleotide phosphate

NBT:

Nitrotetrazolium blue chloride

PEG:

Polyethylene glycol

PMSF:

Phenylmethylsulfonyl fluoride

POX:

Peroxidase

PVP:

Polyvinylpyrrolidone

ROS:

Reactive oxygen species

SDS-PAGE:

Sodium dodecyl sulfate–polyacrylamide gel electrophoresis

SOD:

Superoxide dismutase

TBA:

Thiobarbituric acid

TBARS:

Thiobarbituric acid reactive substances

TCA:

Trichloroacetic acid

References

  • Baxter-Burrell A, Yang Z, Springer PS, Bailey-Serres J (2002) Rop GAP4 dependent Rop GTPase rheostat control of Arabidopsis oxygen deprivation tolerance. Science 296:2026–2028

    Article  PubMed  CAS  Google Scholar 

  • Beyer WF, Fridovich I (1987) Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal Biochem 161:559–566

    Article  PubMed  CAS  Google Scholar 

  • Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptation to environmental stress. Plant Cell 7:1099–1111

    PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • DÍaz-Vivancos P, Clemente-Moreno MJ, Rubio M, Olmos E, García AJ, Martínez-Gómez P, Hernández JA (2008) Alteration in the chloroplastic metabolism leads to ROS accumulation in pea plants in response to plum pox virus. J Exp Bot 59:2147–2160

    Google Scholar 

  • Elstner EF, Heupel A (1976) Inbihition of nitrite formation from hydroxylaminonium-chloride: a simple assay for superoxide dismutase. Anal Biochem 70:616–620

    Article  PubMed  CAS  Google Scholar 

  • Esposito S, Carillo E, Carfagna S (1998) Ammonium metabolism stimulation of glucose-6-phosphate dehydrogenase and phosphoenolpyruvate carboxylase in young barley roots. J Plant Physiol 153:61–66

    Article  CAS  Google Scholar 

  • Esposito S, Carfagna S, Massaro G, Vona V, Di MRV (2001) Glucose-6-phosphate dehydrogenase in barley roots: kinetic properties and localization of the isoforms. Planta 212:627–634

    Article  PubMed  CAS  Google Scholar 

  • Foreman J, Demidchik V, Bothwell JH, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JD, Davies JM, Dolan L (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442–446

    Article  PubMed  CAS  Google Scholar 

  • Galvez L, Gonzalez EM, Arrese-Igor C (2005) Evidence for carbon flux shortage and strong carbon/nitrogen interactions in pea nodules at early stages of water stress. J Exp Bot 56:2551–2561

    Article  PubMed  CAS  Google Scholar 

  • Hauschild R, Von Schaewen A (2003) Differential regulation of glucose-6-phosphate dehydrogenase isoenzyme activities in potato. Plant Physiol 133:47–62

    Article  PubMed  CAS  Google Scholar 

  • Hedeskov CarlJ, Kirsten C, Peter T (1987) Cytosolic ratios of free NADPH/INADP+ and NADH/NAD+ in mouse pancreatic islets, and nutrient-induced insulin secretion. Biochem J 241:161–167

    PubMed  CAS  Google Scholar 

  • Hodges DM, Delong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604–711

    Article  CAS  Google Scholar 

  • Jones MA, Raymond MJ, Yang ZB, Smirnoff N (2007) NADPH oxidase-dependent reactive oxygen species formation required for root hair growth depends on ROP GTPase. J Exp Bot 58:1261–1270

    Article  PubMed  CAS  Google Scholar 

  • Kabir MM, Shimizu K (2003) Fermentation characteristics and protein expression patterns in a recombinant Escherichia coli mutant lacking phosphoglucose isomerase for poly(3-hydroxybutyrate) production. Appl Microbiol Biotechnol 62:244–255

    Article  PubMed  CAS  Google Scholar 

  • Kirkman HN, Gaetani GF (2007) Mammalian catalase: a venerable enzyme with new mysteries. Trends Biochem Sci 32:44–50

    Article  PubMed  CAS  Google Scholar 

  • Kletzien RF, Harris PKW, Foellmi LA (1994) Glucose-6-phosphate dehydrogenase: a “housekeeping” enzyme subject to tissue-specific regulation by hormones, nutrients, and oxidant stress. FASEB J 8:174–181

    PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lara MV, María FD, Carlos SA (2004) Induction of a Crassulacean acid-like metabolism in the C4 succulent plant portulaca oleracea L.: study of enzymes involved in carbon fixation and carbohydrate metabolism. Plant Cell Physiol 45:618–626

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Ryu JY, Kim SY, Jeon JH, Song JY, Cho HT, León AM, Palma JM, Corpas FJ, Gómez M, Romero-Puertas MC, Chatterjee D, Mateos RM, del Río LA, Sandalio LM (2002) Antioxidative enzymes in cultivars of pepper plants with different sensitivity to cadmium. Plant Physiol Biochem 40:813–820

    Article  Google Scholar 

  • Leopold JA, Walker J, Scribner AW, Voetsch B, Zhang YY, Loscalzo AJ, Stanton RC, Loscalzo J (2003) Glucose-6-phosphate dehydrogenase modulates vascular endothelial growth factor-mediated angiogenesis. J Biol Chem 278:32100–32106

    Article  PubMed  CAS  Google Scholar 

  • Leterrier M, del Rio LA, Corpas FJ (2007) Cytosolic NADP-isocitrate dehydrogenase of pea plants: genomic clone characterization and functional analysis under abiotic stress conditions. Free Radic Res 41:191–199

    Article  PubMed  CAS  Google Scholar 

  • Li JS, Chen GC, Wang XM, Zhang YL, Jia HL, Bi YR (2010) Glucose-6-phosphate dehydrogenase-dependent hydrogen peroxide production is involved in the regulation of plasma membrane H+-ATPase and Na+/H+ antiporter protein in salt-stressed callus from Carex moorcroftii. Physiol Plantarum 141(3):239–250

    Article  Google Scholar 

  • Liu YG, Wu RR, Wan Q, Xie GQ, Bi YR (2007) Glucose-6-phosphate dehydrogenase plays a pivotal role in nitric oxide-involved defense against oxidative stress under salt stress in red kidney bean roots. Plant Cell Physiol 48:511–522

    Article  PubMed  CAS  Google Scholar 

  • Marino D, González ME, Frendo P, Puppo A, Arrese-Igor C (2007) NADPH recycling systems in oxidative stressed pea nodules: a key role for the NADP+-dependent isocitrate dehydrogenase. Planta 225:413–421

    Article  PubMed  CAS  Google Scholar 

  • Matsumura H, Miyachi S (1980) Cycling assay for nicotinamide adenine dinucleotides. Meth Enzymol 69:465–470

    Article  CAS  Google Scholar 

  • Matsushita K, Otofuji A, Iwahashi M, Toyama H, Adachi O (2001) NADH dehydrogenase of corynebacterium glutamicum. Purification of an NADH dehydrogenase II homolog able to oxidize NADPH. FEMS Microbiol Lett 204:271–276

    Article  PubMed  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  PubMed  CAS  Google Scholar 

  • Nadine P, Marc N, Mathias Z (2007) NAD Kinase levels control the NADPH concentration in human cells. J Biol Chem 282:33562–33571

    Article  Google Scholar 

  • Nemoto Y, Sasakuma T (2000) Specific expression of glucose-6-phosphate dehydrogenase (G6PDH) gene by salt stress in wheat (Triticum aestivum L.). Plant Sci 158:53–60

    Article  PubMed  CAS  Google Scholar 

  • Nordman T, Xia L, Bjorkhem-Bergman L, Damdimopoulos A, Nalvarte I, Arner ES, Spyrou G, Eriksson LC, Bjornstedt M, Olsson JM (2003) Regeneration of the antioxidant ubiquinol by lipoamide dehydrogenase, thioredoxin reductase and glutathione reductase. BioFactors 18:45–50

    Article  PubMed  CAS  Google Scholar 

  • Ohira K, Ojima K, Fujiwara A (1973) Studies on the nutrition of rice cell culture I. A simple, defined medium for rapid growth in suspension culture. Plant Cell Physiol 14:1113–1121

    CAS  Google Scholar 

  • Pandolfi PP, Sonati F, Riv RI, Mason P, Grosveld F, Luzzatto L (1995) Targeted disruption of the housekeeping gene encoding glucose 6-phosphate dehydrogenase (G6PD): G6PD is dispensable for pentose synthesis but essential for defense against oxidative stress. EMBO J 14:5209–5215

    PubMed  CAS  Google Scholar 

  • Sagi M, Fluhr R (2001) Superoxide production by plant homologues of the gp91(phox) NADPH oxidase: modulation of activity by calcium and by tobacco mosaic virus infection. Plant Physiol 126:1281–1290

    Article  PubMed  CAS  Google Scholar 

  • Sairam RK, Srivastava GC (2002) Changes in antioxidant activity in subcellular fraction of tolerant and susceptible wheat genotypes in response to long term salt stress. Plant Sci 162:897–904

    Article  CAS  Google Scholar 

  • Sindelar L, Sindelarova M (2002) Correlation of viral RNA biosynthesis with glucose-6-phosphate dehydrogenase activity and host resistance. Planta 215:862–869

    Article  PubMed  CAS  Google Scholar 

  • Thom E, Möhlmann T, Quick WP, Camara B, Neuhaus HE (1998) Sweet pepper plastids: enzymic equipment, characterisation of the plastidic oxidative pentose-phosphate pathway, and transport of phosphorylated intermediates across the envelope membrane. Planta 204:226–233

    Article  CAS  Google Scholar 

  • Tian WN, Braunstein LD, Pang J, Stuhlmeier KM, Xi QC, Tian X, Stanton RC (1998) Importance of glucose-6-phosphate dehydrogenase activity for cell growth. J Biol Chem 273:10609–10617

    Article  PubMed  CAS  Google Scholar 

  • Tsuchida H, Tamai T, Fukayama H (2001) High level expression of C4-specific NADP-malic enzyme in leaves and impairment of photoautotrophic growth of a C3 plant rice. Plant Cell Physiol 42:138–145

    Article  PubMed  CAS  Google Scholar 

  • Van Gestelen P, Asard H, Caubergs RJ (1997) Solubilization and separation of a plant plasma membrane NADPH-O2-synthase from other NAD(P)H oxidoreductases. Plant Physiol 115:543–550

    PubMed  CAS  Google Scholar 

  • Veljovic-Jovanovic SD, Noctor G, Foyer CH (2002) Are leaf hydrogen peroxide concentrations commonly overestimated? The potential influence of artefactual interference by tissue phenolics and ascorbate. Plant Physiol Bioch 40:501–507

    Article  CAS  Google Scholar 

  • Wakao S, Andre C, Benning C (2008) Functional analyses of cytosolic Glucose-6-phosphate dehydrogenases and their contribution to seed oil accumulation in Arabidopsis. Plant Physiol 146:277–288

    Article  PubMed  CAS  Google Scholar 

  • Wang R, Okamoto M, Xing X, Crawford NM (2003) Microarray analysis of the nitrate response in Arabidopsis roots and shoots reveals over 1,000 rapidly responding genes and new linkages to glucose, trehalose-6- phosphate, iron, and sulfate metabolism. Plant Physiol 132:556–567

    Article  PubMed  CAS  Google Scholar 

  • Wang XM, Ma YY, Huang CH, Wan Q, Li N, Bi YR (2008) Glucose-6-phosphate dehydrogenase plays a central role in modulating reduced glutathione levels in reed callus under salt stress. Planta 227:611–623

    Article  PubMed  CAS  Google Scholar 

  • Yang YL, Zhang F, He WL, Wang XM, Zhang LX (2003) Iron-mediated inhibition of H + -ATPase in plasma membrane vesicles isolated from wheat roots. Cell Mol Life Sci 60:1249–1257

    PubMed  CAS  Google Scholar 

  • Ying WH (2008) NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences. Antioxid Redox Signal 10:179–206

    Article  PubMed  CAS  Google Scholar 

  • Yojiro T, Hiroshi O, Chisato M, Takuya F, Tesshu T, Kwanghong L, Sizue S, Hiroko T, Haruto S, Hiroshi F, Mitsue M (2008) Overproduction of C4 photosynthetic enzymes in transgenic rice plants: an approach to introduce the C4-likephotosynthetic pathway into rice. J Exp Bot 59:1799–1809

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 31170225), the Major Project of Cultivating New Varieties of Transgenic Organisms (2009ZX08009-029B), Project of the National Eleventh-Five Year Research Program of China (2007BAC30B04) and the Doctoral Program of Higher Education of China (Ratification No. 20100211110009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yurong Bi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Liu, J., Wang, X. et al. Glucose-6-phosphate dehydrogenase acts as a regulator of cell redox balance in rice suspension cells under salt stress. Plant Growth Regul 69, 139–148 (2013). https://doi.org/10.1007/s10725-012-9757-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-012-9757-4

Keywords

Navigation