Skip to main content

Drought-tolerant endophytic actinobacteria promote growth of wheat (Triticum aestivum) under water stress conditions

Abstract

Drought tolerant endophytic actinobacteria Streptomyces coelicolor DE07, S. olivaceus DE10 and Streptomyces geysiriensis DE27 were isolated from cultivated plants of arid and drought affected regions of Rajasthan, India. These isolates exhibited plant growth promotion traits and intrinsic water stress tolerance from −0.05 to −0.73 MPa. Maximum auxin production was observed in majority of actinobacterial cultures in the logarithmic to stationary phase of growth. Significant enhancement of wheat seedling vigour was recorded by the inoculation of these endophytic actinobacteria. S. olivaceus DE10 recorded maximum accumulation of indole 3-acetic acid (84.34 μg mg−1 protein). Culture and cell-free extract of the endophytes was applied on to wheat seeds to assess the effect on growth in water-stressed soil. Maximum yield was recorded with the inoculation of S. olivaceus DE10 culture (492.77 kg ha−1) and cell-free extract (262.31 kg ha−1). Co-inoculation of S. olivaceus DE10 + S. geysiriensis DE27 recorded highest yield of 550.09 kg ha−1 while their cell-free extract yielded 524.92 kg ha−1. Overall, wheat seeds treated with cultures showed better plant growth and yield in comparison to control. Direct coating of cultures on seeds yielded better performance than cell-free extract coated on seeds and co-inoculation of cultures or cell-free extract proved better than single culture inoculations. Production of phytohormones, plant growth promotion traits combined with water stress tolerance potential in these endophytic actinobacteria played a cumulative synergistic role that supported enhanced plant growth promotion of wheat in the stressed soil.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32:666–681

    PubMed  Article  CAS  Google Scholar 

  • Baker D (1990) Methods for the isolation, culture and characterization of the Frankiaceae: soil actinomycetes and symbionts of actinorhizal plants. In: Labeda DP (ed) Isolation of biotechnological organisms from nature. McGraw-Hill Publishing Company, New York, pp 213–236

    Google Scholar 

  • Boudjella H, Baute K, Zitoune A, Mathieu F, Lebsehi A, Sabaou N (2006) Taxonomy and chemical characterization of antibiotics of Streptosporangium Sg10 isolated from a Saharan soil. Microbiol Res 161:288–298

    PubMed  Article  CAS  Google Scholar 

  • Brick JM, Bostock RM, Silverstone SE (1991) Rapid in situ assay for indole acetic acid production by bacteria immobilized on nitrocellulose membrane. Appl Environ Microbiol 57:535–538

    Google Scholar 

  • Bull AT, Stach JEM, Ward AC, Goodfellow M (2005) Marine actinobacteria: perspectives, challenges and future directions. Antonie Van Leeuwenhoek 87:65–79

    Article  Google Scholar 

  • Cao LX, Qiu ZQ, You JL, Tan HM, Zhou S (2004) Isolation and characterization of endophytic Streptomyces antagonists of Fusarium wilt pathogen from surface sterilized banana roots. FEMS Microbiol Lett 247:147–152

    Article  Google Scholar 

  • Cappuccino JG, Sherman N (eds) (1992) Microbiology: a laboratory manual, 3rd edn. Rockland Community College, Suffern, New York

  • Castillo UF, Browne L, Strobel G, Hess WM, Ezra S, Pacheco G, Ezra D (2007) Biologically active endophytic streptomycetes from Nothofagus spp. and other plants in Patagonia. Microb Ecol 53:12–19

    PubMed  Article  Google Scholar 

  • Castro-Sowinski S, Herschkovitz Y, Okon Y, Jurkevitch E (2007) Effects of inoculation with plant growth-promoting rhizobacteria on resident rhizosphere microorganisms. FEMS Microbiol Lett 276:1–11

    PubMed  Article  CAS  Google Scholar 

  • Coombs JT, Franco CMM (2003) Isolation and identification of actinobacteria from surface-sterilized wheat roots. Appl Environ Microbiol 69:5603–5608

    PubMed  Article  CAS  Google Scholar 

  • Diby P, Sarma YR, Srinivasan V, Anandraj M (2005) Pseudomonas fluorescens mediated vigour in black pepper (Piper nigrum L.) under greenhouse cultivation. Ann Microbiol 55:171–174

    Google Scholar 

  • Dimkpa C, Weinand T, Asch F (2009) Plant–rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ 32:1682–1694

    PubMed  Article  CAS  Google Scholar 

  • Fiedler HP, Bruntner C, Bull AT, Goodfellow M, Potterat O, Puder C, Mihm G (2005) Marine actinomycetes as a source of new secondary metabolites. Antonie Van Leeuwenhoek 87:37–42

    PubMed  Article  CAS  Google Scholar 

  • Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914

    Article  CAS  Google Scholar 

  • Hardoim PR, Overbeek V, Leo S, Elsas DJV (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471

    PubMed  Article  CAS  Google Scholar 

  • Hartmann A, Schmid M, van Tuinen D, Berg G (2009) Plant-driven selection of microbes. Plant Soil 321:235–257

    Article  CAS  Google Scholar 

  • Hasegawa S, Meguro A, Nishimura T, Kunoh H (2004) Drought tolerance of tissue-cultured seedlings of mountain laurel (Kalmia latifolia L.) induced by an endophytic actinomycete. I. Enhancement of osmotic pressure in leaf cells. Actinomycetologica 18:43–47

    Article  Google Scholar 

  • Jha A, Sharma D, Saxena J (2011) Effect of single and dual phosphate-solubilizing bacterial strain inoculations on overall growth of mung bean plants. Arch Agron Soil Sci 1–15

  • Jones MG (2009) Using resources from the model plant Arabidopsis thaliana to understand effects of abiotic stress. Salin Water Stress 44:129–132

    Article  Google Scholar 

  • Khamna S, Yokota A, Peberdy JF, Lumyong S (2010) Indole-3-acetic acid production by Streptomyces isolated from some Thai medicinal plant rhizosphere soils. EurAsian J Biosci 4:23–32

    Article  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    PubMed  Article  CAS  Google Scholar 

  • Malviya N, Yadav AK, Yandigeri MS, Arora DK (2011) Diversity of culturable Streptomycetes from wheat cropping system of fertile regions of Indo-Gangetic Plains, India. World J Microbiol Biotechnol 27:1593–1602

    Article  CAS  Google Scholar 

  • Marulanda A, Porcel R, Barea JM, Azcon R (2007) Drought tolerance and antioxidant activities in lavender plants colonized by native drought-tolerant or drought-sensitive Glomus species. Microb Ecol 54:543–552

    PubMed  Article  CAS  Google Scholar 

  • Meena KK, Mesapogu S, Kumar M, Yandigeri MS, Singh G, Saxena AK (2010) Co-inoculation of the endophytic fungus Piriformospora indica with the P-solubilizing bacteria Pseudomonas striata affects population dynamics and plant growth in chickpea. Biol Fertil Soils 46:169–174

    Article  CAS  Google Scholar 

  • Meguro A, Ohmura Y, Hasegawa S, Shimizu M, Nishimura T, Kunoh H (2006) An endophytic actinomycete, Streptomyces sp. MBR-52, that accelerates emergence and elongation of plant adventitious roots. Actinomycetologica 20:1–9

    Article  CAS  Google Scholar 

  • Merzaeva OV, Shirokikh IG (2006) Colonization of plant rhizosphere by actinomycetes of different genera. Microbiology 75:226–230

    Article  CAS  Google Scholar 

  • Michel BE, Kaufmann MR (1973) The osmotic potential of polyethylene glycol 6000. Plant Physiol 51:914–916

    PubMed  Article  CAS  Google Scholar 

  • Morrissey JP, Dow JM, Mark GL, O’Gara F (2004) Are microbes at the root of a solution to world food production? Rational exploitation of interactions between microbes and plants can help to transform agriculture. EMBO Rep 5:922–926

    PubMed  Article  CAS  Google Scholar 

  • Muronets EM, Belavina NV, Mitronova TN, Kameneva SV (1997) Synthesis of indole-3-acetic acid by the saprophytic plant-associated bacterium Agrobacterium radiobacter. Microbiology 66:423–428

    CAS  Google Scholar 

  • Norovsuren Zh, Zenova GM, Mosina LV (2007) Actinomycetes in the rhizosphere of semidesert soils of Mongolia. Eurasian Soil Sci 40:415–418

    Article  Google Scholar 

  • Petrini O (1991) Fungal endophytes in tree leaves. In: Andrews JH, Hirano SS (eds) Microbial ecology of leaves. Springer, New York, pp 179–197

    Chapter  Google Scholar 

  • Procopio REL, Araujo WL, Maccheroni W Jr, Azevedo JL (2009) Characterization of an endophytic bacterial community associated with Eucalyptus spp. Genet Mol Res 8:1408–1422

    PubMed  Article  CAS  Google Scholar 

  • Reinhold-Hurek B, Hurek T (2011) Living inside plants: bacterial endophytes. Curr Opin Plant Biol 14:435–443

    PubMed  Article  Google Scholar 

  • Ruiz-Lozano JM, Azcon R, Palma JM (1996) Superoxide dismutase activity in arbuscular mycorrhizal Lactuca sativa plants subjected to drought stress. New Phytol 134:327–333

    Article  CAS  Google Scholar 

  • Sardi P, Saracchi M, Quaroni S, Petrolini B, Borgonovi GE, Merli S (1992) Isolation of endophytic Streptomyces strains from surface-sterilized roots. Appl Environ Microbiol 58:2691–2693

    PubMed  CAS  Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56

    PubMed  Article  CAS  Google Scholar 

  • Seena S, Sridhar KR (2004) Endophytic fungal diversity of 2 sand dune wild legumes from the southwest coast of India. Can J Microbiol 50:1015–1021

    PubMed  Article  CAS  Google Scholar 

  • Shakirova FM, Sakhabutdinova AR, Bezrukova MV, Fatkhutdinova RA, Fatkhutdinova DR (2003) Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Sci 164:317–322

    Article  CAS  Google Scholar 

  • Shi Y, Lou K, Li C (2010) Growth and photosynthetic efficiency promotion of sugar beet (Beta vulgaris L.) by endophytic bacteria. Photosynth Res 105:5–13

    PubMed  Article  CAS  Google Scholar 

  • Shirokikh IG, Zenova GM, Merzaeva OV, Lapygina EV, Lysak LV (2006) Number and structure of actinomycetes complexes in the rhizosphere winter rye, oat and red clover. Izv Akad Nauk Ser Biol 4:496–501

    PubMed  Google Scholar 

  • Spaepen S, Versees W, Gocke D, Pohl M, Steyaert J, Vanderleyden J (2007) Characterization of phenylpyruvate decarboxylase, involved in auxin production of Azospirillum brasilense. J Bacteriol 189:7626–7633

    PubMed  Article  CAS  Google Scholar 

  • Tiwari S, Singh P, Tiwari R, Meena KK, Yandigeri M, Singh DP, Arora DK (2011) Salt-tolerant rhizobacteria-mediated induced tolerance in wheat (Triticum aestivum) and chemical diversity in rhizosphere enhance plant growth. Biol Fertil Soils 47:907–916

    Article  CAS  Google Scholar 

  • Tsavkelova EA, Cherdyntseva TA, Netrusov AI (2005) Auxin production by bacteria associated with orchid roots. Mikrobiologiia 74:55–62

    PubMed  CAS  Google Scholar 

  • Verma VC, Gond SK, Kumar A, Mishra A, Kharwar RN, Gange AC (2009) Endophytic actinomycetes from Azadirachta indica A. Juss.:isolation, diversity, and anti-microbial activity. Microb Ecol 57:749–756

    PubMed  Article  Google Scholar 

  • Yang J, Kloepper JW, Ryu CM (2008) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4

    PubMed  Article  Google Scholar 

Download references

Acknowledgments

Authors are thankful to the Indian Council of Agricultural Research (ICAR), New Delhi, India for financial assistance under the Network project ‘Application of Microorganisms in Agriculture and Allied Sectors’ (AMAAS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahesh S. Yandigeri.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 48 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yandigeri, M.S., Meena, K.K., Singh, D. et al. Drought-tolerant endophytic actinobacteria promote growth of wheat (Triticum aestivum) under water stress conditions. Plant Growth Regul 68, 411–420 (2012). https://doi.org/10.1007/s10725-012-9730-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-012-9730-2

Keywords

  • Indole 3-acetic acid
  • Drought-tolerance
  • Endophyte
  • Plant growth promotion
  • Streptomyces