Skip to main content
Log in

A hormonal misunderstanding in Acca sellowiana embryogenesis: levels of zygotic embryogenesis do not match those of somatic embryogenesis

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Endogenous levels of IAA, ABA and four types of CKs were analyzed in zygotic and indirect (ISE) and direct somatic embryogenesis of Acca sellowiana. Zygotic and somatic embryos at different developmental stages were sampled for morphological and hormonal analysis. Both embryo types showed substantial asymmetry in hormone levels. Zygotic embryos displayed a conspicuous peak of IAA in early developmental stages. The results outlined the hormonal variations occurring during zygotic and somatic embryogenesis regarding the timing, nature and hormonal status involved in both processes. The short transient pulse of IAA observed on the 3rd day in culture was suggested to be involved with the signaling for the induction of somatic embryogenesis. Fertilized ovule development was associated with increased IAA levels 21–24 days after pollination, followed by a sharp decrease in the cotyledonary stage, both in zygotic and somatic embryos. There was a prominent increase in ABA levels in cultures which generated ISE 24–30 days after pollination, a period that corresponds to the heart and torpedo stages. The levels of total CKs (Z, [9R]Z, iP and [9R]iP) were also always higher in zygotic than in somatic embryogenesis. While zygotic embryogenesis was dominated by the presence of zeatin, the somatic process, contrarily, was characterized by a large variation of the other cytokinin forms and amounts studied. The above results, when taken together, could be related to the previously observed high frequency formation of anomalous somatic embryos formed in A. sellowiana, as well as to their low germination ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Aberlenc-Bertossi F, Chabrillange N, Duval Y, Tregear J (2008) Contrasting globulin and cystein proteinase gene expression patterns reveal fundamental developmental differences between zygotic and somatic embryos of oil palm. Tree Physiol 28:1157–1167

    Article  PubMed  CAS  Google Scholar 

  • Barton MK (2010) Twenty years on: the inner workings of the shoot apical meristem, a developmental dynamic. Dev Biol 341:95–113

    Article  PubMed  CAS  Google Scholar 

  • Chen KH, Miller AN, Patterson GW, Cohen JD (1988) A rapid and simple procedure for purification of indole-3-acetic acid prior to GC-SIM-MS analysis. Plant Physiol 86:822–825

    Article  PubMed  CAS  Google Scholar 

  • Chen D, Ren Y, Deng Y, Zhao J (2010) Auxin polar transport is essential for the development of zygote and embryo in Nocotiana tabacum L. and correlated with ABP1 and PM H+- ATPase activities. J Exp Bot 61:1853–1867

    Article  PubMed  CAS  Google Scholar 

  • Christianson ML, Warnick DA (1983) Competence and determination in the process of in vitro shoot organogenesis. Dev Biol 95(2):288–293

    Article  PubMed  CAS  Google Scholar 

  • Dodeman VL, Ducreux G, Kreis M (1997) Zygotic embryogenesis versus somatic embryogenesis. J Exp Bot 48:1493–1509

    CAS  Google Scholar 

  • Faure O, Dewitte W, Nougarede A, Van Onckelen H (1998) Precociously germinating somatic embryos of V. vinifera have lower ABA and IAA levels than their germinating zygotic counterparts. Physiol Plant 102:591–595

    Article  CAS  Google Scholar 

  • Fehér A, Pasternak TP, Dudits D (2003) Transition of somatic plant cells to an embryogenic state. Plant Cell Tissue Organ Cult 74:201–228

    Article  Google Scholar 

  • Gallois JL, Nora FR, Mizukami Y, Sablowiski R (2004) WUSCHEL induces shoot stem cell activity and developmental plasticity in the root meristem. Genes Dev 18:375–380

    Article  PubMed  CAS  Google Scholar 

  • Gambino G, Minuto M, Boccacci P, Perrone I, Vallania R, Gribaudo I (2011) Characterization of expression dynamics of WOX homeodomain transcription factors during somatic embryogenesis in V. vinifera. J Exp Bot 62:1089–1101

    Article  PubMed  CAS  Google Scholar 

  • Gillaspy G, David HB, Gruissem W (1993) Fruits: a developmental perspective. Plant Cell 5(10):1439–1451

    PubMed  Google Scholar 

  • Guerra MP, Pescador R, Dal Vesco LL, Nodari RO, Ducroquet JPHJ (1997) In vitro morphogenesis in Feijoa sellowiana: somatic embryogenesis and plant regeneration. Acta Horticulturae 452:27–36

    Google Scholar 

  • Haecker A, Gross-Hardt R, Geiges B et al (2004) Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana. Development 131:657–666

    Article  PubMed  CAS  Google Scholar 

  • Ivanova A, Velcheva M, Denchev P, Atanassov A, Van Onckelen HA (1994) Endogenous hormone levels during direct somatic embryogenesis in Medicago falcata. Physiol Plant 92(1):85–89

    Article  CAS  Google Scholar 

  • Jiménez M (2001) Regulation of in vitro somatic embryogenesis with emphasis on the of role endogenous hormone. Rev Bras Fisiol Veg 13(2):196–223

    Article  Google Scholar 

  • Kamada H, Harada H (1981) Changes in endogenous level and effect of abscisic acid during somatic embryogenesis of Daucus carota L. Plant Cell Physiol 22:1423–1429

    CAS  Google Scholar 

  • Kikuchi A, Sanuki N, Higashi K, Koshiba T, Kamada H (2006) Abscisic acid and stress treatment are essential for the acquisition of embryogenic competence by carrot somatic cells. Planta 223:637–645

    Article  PubMed  CAS  Google Scholar 

  • Lo Schiavo F, Pitto L, Giuliano G et al (1989) DNA methylation of embryogenic carrot cell cultures and its variations as caused by mutation, differentiation, hormones and hypomethylating drugs. Theor Appl Genet 77:325–331

    Article  CAS  Google Scholar 

  • Ma H, Liang Z, Wu H, Huang L, Wang Z (2010) Role of endogenous hormones, glumes, endosperm and temperature on germination of Leymus chinensis (Poaceae) seeds during development. J Plant Ecol 3:269–277

    Article  Google Scholar 

  • Meinke DW (1991) Perspectives on genetic analysis of plant embryogenesis. Plant Cell 3:857–866

    PubMed  CAS  Google Scholar 

  • Morel G, Wetmore RM (1951) Fern callus culture. Am J Bot 38:141–143

    Article  CAS  Google Scholar 

  • Murthy BNS, Murch SJ, Saxena PK (1995) Thidiazuron-induced somatic embryogenesis in intact seedlings of peanut (Arachis hypogaea): endogenous growth regulator levels and significance of cotyledons. Physiol Plant 94(2):268–276

    Article  CAS  Google Scholar 

  • Nakagawa H, Saiyo T, Yamauchi N, Shygyo M, Kako S, Ito A (2001) Effects of sugars and abscisic acid on somatic embryogenesis from melon (Cucumis melo L) expanded cotyledon. Scientia Horticult 90:85–92

    Article  CAS  Google Scholar 

  • Namasivayam P (2007) Acquisition of embryogenic competence during somatic embryogenesis. Plant Cell Tissue Organ Cult 90(1):1–8

    Article  CAS  Google Scholar 

  • Pasternak T, Prinsen E, Ayaydin F et al (2002) The role of auxin, pH and stress in the activation of embryogenic cell division in leaf protoplast-derived cells of alfalfa (Medicago sativa L). Plant Physiol 129:1807–1819

    Article  PubMed  CAS  Google Scholar 

  • Peres LEP, Mercier H, Kerbauy GB, Zaffari GR (1997) Níveis endógenos de AIA, citocininas e ABA em uma orquídea acaule e uma bromélia sem raiz, determinados por HPLC e Elisa. Revista Brasileira de Fisiologia Vegetal 9:169–176

    CAS  Google Scholar 

  • Pescador R, Kerbauy GB, Viviani D, Kraus JE (2008) Anomalous somatic embryos in A. sellowiana (O. Berg) Burret (Myrtaceae). Revista Brasileira de Botânica 31(1):155–164

    Article  Google Scholar 

  • Spíchal L, Rakova NY, Riefler M et al (2004) Two cytokinin receptors of Arabidopsis thaliana, CRE1/AHK4 and AHK3, differ in their ligand specificity in a bacterial assay. Plant Cell Physiol 45(9):1299–1305

    Article  PubMed  Google Scholar 

  • Su YH, Zhao XY, Liu YB, Zhang CL, O`Neil SD, Zhang XS (2009) Auxin-induced WUS expression is essential for embryonic stem cells renewal during somatic embryogenesis in Arabdopsis. Plant J 59:448–460

    Article  PubMed  CAS  Google Scholar 

  • von Arnold S, Eriksson T (1981) In vitro studies of adventitious shoot formation in Pinus cordata. Can J Bot 59:870–874

    Article  Google Scholar 

  • Zimmerman JL (1993) Somatic embryogenesis: a model for development in higher plants. Plant Cell 5:1411–1423

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Pedro Guerra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pescador, R., Kerbauy, G.B., de Melo Ferreira, W. et al. A hormonal misunderstanding in Acca sellowiana embryogenesis: levels of zygotic embryogenesis do not match those of somatic embryogenesis. Plant Growth Regul 68, 67–76 (2012). https://doi.org/10.1007/s10725-012-9694-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-012-9694-2

Keywords

Navigation