Skip to main content
Log in

High frequency somatic embryogenesis, regeneration and correlation of alkaloid biosynthesis with gene expression in Papaver somniferum

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Opium poppy (Papaver somniferum) remains the most important source for several pharmaceutical benzylisoquinoline alkaloids including the narcotic analgesic morphine, the anti-tussive drug codeine. Selection, breeding as well as other molecular practices have produced large number of germplasm with modulated biosynthesis and altered accumulation of specific alkaloids. However, there is need to modulate biosynthetic pathways of these alkaloids through transgenic approach, which requires development of an efficient regeneration system for genetic transformation. We studied response of different explants for somatic embryogenesis and developed an efficient protocol for P. somniferum somatic embryogenesis, regeneration as well as successful transplantation in fields. In our system, embryogenic callus from root explants was induced by 2,4-D and kinetin followed by maturation with gibberellin and abscisic acid and regeneration by hormone free half-strength MS media. Though root regeneration from somatic embryos has been shown as limiting factor in established protocols, we observed efficient root and shoot regeneration through somatic embryos in our study. We analyzed alkaloid content in in vitro callus and field grown plants and concluded developmental control of alkaloid biosynthesis. Absence of transcripts of some of the genes and specific alkaloids also suggests regulation at transcriptional level of alkaloid biosynthesis pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

2,4-D:

2,4-Dichlorophenoxyacetic acid

ABA:

Abscisic acid

GA:

Gibberellic acid

MI:

Mesoinositol

kn:

Kinetin

PGR:

Plant growth regulators

References

  • Alcantara J, Bird DA, Franceschi VR, Facchini PJ (2005) Sanguinarine biosynthesis is associated with the endoplasmic reticulum in cultured opium poppy cells after elicitor. Plant Physiol 138:173–183

    Article  PubMed  CAS  Google Scholar 

  • Asif M, Trivedi P, Solomos T, Tucker M (2006) Isolation of high-quality RNA from apple (Malus domestica) fruit. J Agric Food Chem 54:5227–5229

    Article  PubMed  CAS  Google Scholar 

  • Baskaran P, Jayabalan N, Van Staden J (2011) Production of psoralen by in vitro regenerated plants from callus cultures of Psoralea corylifolia L. Plant Growth Regul 64:167–169

    Google Scholar 

  • Bird DA, Facchini PJ (2001) Berberine bridge enzyme, a key branch-point enzyme in Benzylisoquinoline alkaloid biosynthesis, contains a vacuolar sorting determinant. Planta 213:888–897

    Article  PubMed  CAS  Google Scholar 

  • Bird DA, Vincent R, Franceschi B, Facchini PJ (2003) A tale of three cell types: alkaloid biosynthesis is localized to sieve elements in opium poppy. Plant Cell 15:2626–2635

    Article  PubMed  CAS  Google Scholar 

  • Chaterjee A, Shukla S, Mishra P, Rastogi A, Singh SP (2010) Prospects of in vitro production of thebaine in opium poppy (Papaver somniferum L.). Ind Crops Prod 32:668–670

    Article  CAS  Google Scholar 

  • Chitty JA, Allen RS, Fist AJ, Larkin PJ (2003) Genetic transformation in commercial cultivars of opium poppy, Papaver somniferum and movement of transgenic pollen in field. Funct Plant Biol 30:1045–1058

    Article  CAS  Google Scholar 

  • De Jong AJ, Cordewener J, Lo Schiavo F, Terzi M, Vandekerckhove J, Van Kammen A, De Vries SC (1992) A carrot somatic embryo mutant is rescued by chitinase. Plant Cell 4:425–433

    PubMed  Google Scholar 

  • Desgagne-Penix I, Khan MF, Schriemer DC, Cram D, Nowak J, Facchini PJ (2010) Integration of deep transcriptome and proteome analyses reveals the components of alkaloid metabolism in opium poppy cell cultures. BMC Plant Biol 10:252

    Article  PubMed  Google Scholar 

  • Dieu P, Dunwell JM (1988) Anther culture with different genotype of opium poppy (Papaver somniferum L.): effect of cold treatment. Plant Cell Tiss Organ Cult 12:263–271

    Article  Google Scholar 

  • Facchini PJ (2001) Alkaloid biosynthesis in plants: biochemistry, cell biology, molecular regulation and metabolic engineering applications. Ann Rev Plant Physiol Plant Mol Biol 52:29–66

    Article  CAS  Google Scholar 

  • Facchini PJ, Bird DA (1998) Developmental regulation of benzylisoquinoline alkaloid biosynthesis in opium poppy plants and tissue cultures. In Vitro Cell Dev Biol 34:69–79

    CAS  Google Scholar 

  • Facchini PJ, Johnson AG, Pauport J, De Luca V (1996a) Uncoupled defense gene expression and antimicrobial alkaloid accumulation in elicited opium poppy cell cultures. Plant Physiol 111:687–697

    Article  PubMed  CAS  Google Scholar 

  • Facchini PJ, Penzes C, Johnson AG, Bull D (1996b) Molecular characterization of Berberine bridge enzyme gene from opium poppy. Plant Physiol 112:1669–1677

    Article  PubMed  CAS  Google Scholar 

  • Facchini PJ, Hagel JM, Liscombe DK, Loukanina N, MacLeod BP, Samanani N, Zulak KG (2007) Opium poppy: blueprint for an alkaloid factory. Phytochem Rev 6:97–124

    Article  CAS  Google Scholar 

  • Facchini PJ, Loukanina N, Blanche V (2008) Genetic transformation via somatic embryogenesis to establish herbicide-resistant opium poppy. Plant Cell Rep 27:719–727

    Article  PubMed  CAS  Google Scholar 

  • Frick S, Kramell R, Schmidt J, Fist AJ, Kutchan TM (2005) Comparative qualitative and quantitative determination of alkaloids in narcotic and condiment Papaver somniferum cultivars. J Nat Prod 68:666–673

    Article  PubMed  CAS  Google Scholar 

  • Gang YY, Dh GS, Shi DJ, Weng MZ, Lix D (2003) Establishment of in vitro regeneration system of the Atrichum mosses. Acta Bot Sin 45:1475–1480

    Google Scholar 

  • Gerardy R, Zenk MH (1993) Purification and characterization of salutaridine NADPH 7-oxidoreductase from Papaver somniferum. Phytochemistry 34:125–132

    Article  CAS  Google Scholar 

  • Han X, Lamshoft M, Grobe N, Ren X, Fist AJ, Kutchan TM, Spiteller M, Zenk MH (2010) The biosynthesis of papaverine proceeds via (S)-reticuline. Phytochemistry 71:1305–1312

    Article  PubMed  CAS  Google Scholar 

  • Hazra S, Sathaye SS, Mascarenhas AF (1989) Direct somatic embryogenesisin peanut (Arachis hypogaea L.). Biotechnology 7:949–951

    Article  Google Scholar 

  • Hsu AF, Pack J (1989) Metabolism of 14C-codeine in cell cultures of Papaver somniferum. Phytochemistry 28:1879–1881

    Article  CAS  Google Scholar 

  • Huang FC, Kutchan TM (2000) Distribution of morphinan and benzophenanthridine alkaloid gene transcript accumulation in P. somniferum. Phytochemistry 53:555–564

    Article  PubMed  CAS  Google Scholar 

  • Kassem MA, Jacquin A (2001) Somatic embryogenesis, rhizogenesis and morphinan alkaloids production in two species of opium poppy. J Biomed Biotechnol 1:70–78

    Article  PubMed  Google Scholar 

  • Kauth PJ, Timothy R, Johnson SL, Kane SME (2008) A classroom exercises in hand pollination and in vitro asymbiotic orchid seed germination. Plant Cell Tiss Organ Cult 93:223–230

    Article  Google Scholar 

  • Khanna KR, Shukla S (1991) Inheritance of papaverine in Papaver somniferum L. and a morphological marker for high papaverine plants. Herba Hungarica 30:7–10

    CAS  Google Scholar 

  • Lenz R, Zenk MH (1995) Properties of codionine reductase (NADPH) from Papaver somniferum L. cell cultures. Eur J Biochem 233:132–139

    Article  PubMed  CAS  Google Scholar 

  • Michalczuk L, Cooke TJ, Cohen JD (1992a) Auxin levels at different stages of carrot embryogenesis. Phytochemistry 31:1097–1103

    Article  CAS  Google Scholar 

  • Michalczuk L, Rlbnicky DM, Cooke TJ, Cohen JD (1992b) Regulation of Indole-3-acetic acid biosynthetic pathways in carrot cell cultures. Plant Physiol 100:1346–1353

    Article  PubMed  CAS  Google Scholar 

  • Mishra BK, Pathak S, Sharma A, Trivedi PK, Shukla S (2010) Modulated gene expression in newly synthesized auto-tetraploid of Papaver somniferum L. S Afr J Bot 76:447–452

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assay with tobacco tissue culture. Plant Physiol 15:473–497

    Article  CAS  Google Scholar 

  • Mweetwaa AM, Welbauma GE, Tayb D (2008) Effects of development, temperature and calcium hypochlorite treatment on in vitro germinability of Phalaenopsis seeds. Sci Hortic 117:25–26

    Article  Google Scholar 

  • Nessler CL (1982) Somatic embryogenesis in opium poppy, Papaver somniferum L. Physiol Plant 55:453–458

    Article  Google Scholar 

  • Nessler CL (1998) In vitro culture technologies. In: Bernath J (ed) Poppy: the genus Papaver. Harwood Academic, Amsterdam, pp 209–218

    Google Scholar 

  • Ovecka M, Bobák M, Blehová A, Krištín J (1997) Papaver somniferum regeneration by somatic embryogenesis and shoot organogenesis. Biol Plant 40:321–328

    Article  Google Scholar 

  • Park SU, Facchini PJ (2000) High efficiency somatic embryogenesis and plant regeneration in California poppy, Eschsholizia California cham. Plant Cell Rep 19:421–426

    Article  CAS  Google Scholar 

  • Park SU, Facchini PJ (2001) Somatic embryogenesis from embryogenic cell suspension cultures of California poppy, Eschscholzia california cham. In Vitro Plant Cell Dev Biol 37:35–39

    Article  CAS  Google Scholar 

  • Park SU, Yu M, Facchini PJ (2003) Modulation of berberine bridge enzyme levels in transgenic root cultures of California poppy alters the accumulation of benzophenanthridine alkaloids. Plant Mol Biol 51:153–164

    Article  PubMed  CAS  Google Scholar 

  • Rostampour S, Sohi H, Jourabchi E, Ansari E (2009) Influence of A. rhizogenes on induction of hairy root and benzylisoquinoline alkaloid production in Persian poppy (Papaver bracteatum lindl.): preliminary report. World J Microbiol Biotechnol 25:1807–1814

    Article  Google Scholar 

  • Rostampour S, Sohi H, Dehestani A (2010) In vitro regeneration of Persian poppy (Papaver bracteatum). Biologia 65:647–652

    Article  Google Scholar 

  • Sarin R (1996) Effect of tyrosine on the production of alkaloids in the high-yielding cell lines of Papaver somniferum tissue culture. J Plant Biochem Biotechnol 5:61–62

    CAS  Google Scholar 

  • Skoog F, Armstrong DJ (1970) Cytokinins: metabolism and action. Ann Rev Plant Physiol 21:359–384

    Article  CAS  Google Scholar 

  • Stasolla C, Yeung EC (2003) Recent advances in conifer somatic embryogenesis: improving somatic embryo quality. Plant Cell Tiss Organ Cult 74:15–35

    Article  CAS  Google Scholar 

  • Steinmacher DA, Clement CR, Guerra MP (2007) Somatic embryogenesis from immature peach palm inflorescence explants: towards development of an efficient protocol. Plant Cell Tiss Organ Cult 89:15–22

    Article  Google Scholar 

  • Tisseral B, Berhow M (2009) Production of pharmaceuticals from Papaver cultivars in vitro. Eng Life Sci 3:190–196

    Article  Google Scholar 

  • Wakhlu AK, Bajwa PS (1986) Regeneration of uniform plant from somatic embryos of Papaver somniferum (Opium poppy). Phytomorphology 36:101–105

    Google Scholar 

  • White PR (1967) Plant cell and tissue culture. In: Wilt FH, Wesseles NK (eds) Methods of developmental biology. Thomas Y. Crowell, New York, pp 555–564

    Google Scholar 

  • Yadav HK, Shukla S, Singh SP (2006) Genetic variability and inter relationship among opium and its alkaloids in opium poppy (Papaver somniferum L.). Euphytica 150:207–214

    Article  CAS  Google Scholar 

  • Yang JL, Zhao B, Seong ES, Kim MJ, Kang WH, Kim NY, Chang YY, Cheng HL (2010) Callus induction and high-efficiency plant regeneration via somatic embryogenesis in Papaver nudicaule L., an ornamental medicinal plant. Plant Biotechnol Rep 4:261–267

    Article  Google Scholar 

  • Zulak KG, Cornish A, Daskalchuk TE, Deyholos MK, Goodenowe DB, Gordon PMK, Klassen D, Pelcher LE, Sensen CW, Facchini PJ (2007) Gene transcript and metabolite profiling of elicitor-induced opium poppy cell cultures reveals the coordinate regulation of primary and secondary metabolism. Planta 225:1085–1106

    Article  PubMed  CAS  Google Scholar 

  • Zulak KG, Khan MF, Alcantara J, Schriemer DC, Facchini PJ (2009) Plant defense responses in opium poppy cell cultures revealed by liquid chromatography-tandem mass spectrometry proteomics. Mol Cell Proteom 8:86–98

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Council of Scientific and Industrial Research, New Delhi, Govt. of India, for providing the financial support to carry out this work under Network Project (NWP-08). Financial support from Department of Revenue, Ministry of Finance, New Delhi is also acknowledged. SP and BKM acknowledge Council of Scientific and Industrial Research, New Delhi, Govt. of India for Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabodh Kumar Trivedi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10725_2012_9689_MOESM1_ESM.ppt

Representative chromatogram of different standards and extract of plant opium latex. M, C, T, N, and P represents morphine, codeine, thebaine, norcotine and papaverine respectively. (PPT 120 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pathak, S., Mishra, B.K., Misra, P. et al. High frequency somatic embryogenesis, regeneration and correlation of alkaloid biosynthesis with gene expression in Papaver somniferum . Plant Growth Regul 68, 17–25 (2012). https://doi.org/10.1007/s10725-012-9689-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-012-9689-z

Keywords

Navigation