Skip to main content
Log in

Screening of differentially expressed genes during the end of endogenous dormancy of flower buds in Prunus armeniaca L.

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

An insufficient endogenous dormancy period of apricot flower buds can result in reduced frost resistance. This is one of the causes of lower fruit yields in certain years. The aim of this work was the analysis of gene expression profiles in flower buds of four apricot cultivars (‘Sundrop’, ‘Stark Early Orange’, ‘Vestar’ and ‘Betinka’) that differ in the duration of their dormancy periods. The investigation was carried out before and during exit of buds from endogenous dormancy. Transcriptomes from bud tissues were analyzed by cDNA amplified fragment length polymorphism. Amplified fragments showing a significant change in their intensity within obtained expression profiles were considered to be derived from genes associated with the exit of flower buds from endogenous dormancy. All selected fragments were sequenced and compared with sequences recorded in public databases, yielding 147 sequences with similarity to previously described genes. The majority of identified genes match with theoretical expectations for events happening in dormant tissues. Moreover, some of the identified genes are included in the category of cellular or physiological processes previously reported to directly influence the exit from endogenous dormancy (e.g. aquaporin, GTP-binding proteins, elongation factor 1-alpha, ATP-dependent ubiquitin, xyloglucan endotransglycosylase hydrolase, and EXGT-A1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arora R, Rowland L, Tanino K (2003) Induction and release of bud dormancy in woody perennials: a science comes of age. Hort Sci 38(5):911–921

    Google Scholar 

  • Bachem CWB, Oomen R, Visser R (1998) Transcript imaging with cDNA-AFLP: a step-by-step protocol. Plant Mol Biol Rep 16:157–173

    Article  CAS  Google Scholar 

  • Baisakh N, Subudhi PK, Parami NP (2006) cDNA-AFLP analysis reveals differential gene expression in response to salt stress in a halophyte Spartina alterniflora Loisel. Plant Sci 170:1141–1149

    Article  CAS  Google Scholar 

  • Breyne P, Dreesen R, Cannoot B, Rombaut D, Vandepoele K, Rombauts S, Vanderhaeghen R, Inzé D, Zabeau M (2003) Quantitative cDNA-AFLP analysis for genome-wide expression studies. Mol Gen Genomics 269:173–179

    CAS  Google Scholar 

  • Čechová J, Baránek M, Pidra M (2009a) Optimization of the preparation of ds cDNA from flower buds of apricot for the cDNA-AFLP analysis. Belgium: ISHS. Acta Hortic 839:537–544

    Google Scholar 

  • Čechová J, Fišerová H, Klemš M, Krška B, Pidra M (2009a) Fyziologické markery pro stanovení výstupu květních pupenů meruněk z endogenní dormance. Acta horticulturae et regiotecturae, pp 59–62

  • Chen F, Nonogaki H, Bradford KJ (2002) A gibberellin-regulated xyloglucan endotransglycosylase gene is expressed in the endosperm cap during tomato seed germination. J Exp Bot 53:215–223

    Article  PubMed  CAS  Google Scholar 

  • Colucci G, Apone F, Alyeshmerni N, Chalmers D, Chrispeels MJ (2002) GCR1, the putative Arabidopsis G protein-coupled receptor gene is cell cycle-regulated, and its overexpression abolishes seed dormancy and shortens time to flowering. Proc Natl Acad Sci USA 99:4736–4741

    Article  PubMed  CAS  Google Scholar 

  • Cosgrove DJ (1999) Enzymes and other agents that enhance cell wall extensibility. Annu Rev Plant Physiol Plant Mol Biol 50:391–417

    Article  PubMed  CAS  Google Scholar 

  • Crabbe J, Barnola P (1996) A new conceptual approach to bud dormancy in woody plants. In: Lang GA (ed) Plant dormancy. CAB International, Wallingford, pp 83–113

    Google Scholar 

  • Eagles CF, Wareing PF (1964) The role of growth substances in the regulation of bud dormancy. Physiol Plant 17:697–709

    Article  CAS  Google Scholar 

  • Fry S, Smith R, Renwick K, Martin D, Hodge S, Matthews K (1992) Xyloglucan endotransglycosylase, a new wall-loosening enzyme activity from plants. Biochem J 282:821–828

    PubMed  CAS  Google Scholar 

  • Fuchigami LH, Weiser CJ, Kobayashi K, Timmis R, Gusta LV (1982) A degree growth stage (°GS) model and cold acclimation in temperate woody plants. In: Li PH, Sakai A (eds) Plant cold hardiness and freezing stress mechanisms and crop implication. Academic, New York, pp 93–116

    Google Scholar 

  • Grasser M, Kane CM, Merkle T, Mezer M, Emmersen J, Grasser KD (2009) Transcript elongation factor TFIIS is involved in arabidopsis seed dormancy. J Mol Biol 386(3):598–611

    Article  PubMed  CAS  Google Scholar 

  • Hannerz M (1999) Evaluation of temperature models for predicting bud burst in Norway spruce. Can J For Res 29:9–19

    Article  Google Scholar 

  • Horvath DP, Anderson JV, Soto-Suarez M, Chao WS (2006) Transcriptome analysis of leafy spurge (Euphorbia esula) crown buds during shifts in well-defined phases of dormancy. Weed Sci 54:821–827

    Article  CAS  Google Scholar 

  • Horvath DP, Chao WS, Suttle JC, Thimmapuram J, Anderson JV (2008) Transcriptome analysis identifies novel responses and potential regulatory genes involved in seasonal dormancy transitions of leafy spurge (Euphorbia esula L.). BMC Genomics 9:536

    Article  PubMed  Google Scholar 

  • Jia Y, Anderson JV, Horvath DP, Gu YQ, Lym RG, Chao WS (2006) Subtractive cDNA libraries identify differentially expressed genes in dormant and growing buds of leafy spurge (Euphorbia esula). Plant Mol Biol 61:329–344

    Article  PubMed  CAS  Google Scholar 

  • Jiménez S, Zhigang L, Reighard GL, Bielenberg DG (2010) Identification of genes associated with growth cessation and bud dormancy entrance using a dormancy-incapable tree mutant. BMC Plant Biol 10:25

    Article  PubMed  Google Scholar 

  • Johanson U, West J, Lister C, Michaels S, Amasino R, Dean C (2000) Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. Science 290:344–347

    Article  PubMed  CAS  Google Scholar 

  • Kawabata S, Li Y, Saito T, Zhou B (2009) Identification of differentially expressed genes during flower opening by suppression subtractive hybridization and cDNA microarray analysis in Eustoma grandiflorum. Sci Hortic 122:129–133

    Article  CAS  Google Scholar 

  • Kidou S, Ejiri S (1998) Isolation, characterization and mRNA expression of four cDNAs encoding translation elongation factor 1A from rice (Oryza sativa L.). Plant Mol Biol 36:137–148

    Article  PubMed  CAS  Google Scholar 

  • Ko JH, Chow KS, Han KH (2003) Transcriptome analysis reveals novel features of the molecular events occurring in the laticifers of Hevea brasiliensis (para rubber tree). Plant Mol Biol 53:479–492

    Article  PubMed  CAS  Google Scholar 

  • Krawiarz K, Szczotka Z (2000) Activity of ATPases during dormancy breaking in Norway maple (Acer platanoides L.) seeds. Acta Soc Bot Pol 69:119–121

    CAS  Google Scholar 

  • Leida C, Terol J, Marti G, Agusti M, Llacer G, Badenes ML, Rios G (2010) Identification of genes associated with bud dormancy release in Prunus persica by suppression subtractive hybridization. Tree Physiol 30(5):655–666

    Article  PubMed  CAS  Google Scholar 

  • Li L, Reighard GL, Abbott AG, Bielenberg DG (2009) Dormancy-associated MADS genes from the EVG locus of peach [Prunus persica (L.) Batsch] have distinct seasonal and photoperiodic expression patterns. J Exp Bot 60:3521–3530

    Article  PubMed  CAS  Google Scholar 

  • Maurel K, Sakr S, Gerbe F, Guilliot A, Bonhomme M, Rageau R, Pétel G (2004) Sorbitol uptake is regulated by glucose through the hexokinase pathway in vegetative peach-tree buds. J Exp Bot 55:879–888

    Article  PubMed  CAS  Google Scholar 

  • Nishitani K, Tominaga R (1992) Endo-xyloglucan transferase, a novel class of glycosyltransferase that catalyzes transfer of a segment of xyloglucan molecule to another xyloglucan molecule. J Biol Chem 267:21058–21064

    PubMed  CAS  Google Scholar 

  • Nitsch JP (1957) Photoperiodism in woody plants. Proc Am Soc Hortic Sci 70:526–544

    CAS  Google Scholar 

  • Partanen J, Koski V, Hänninen H (1998) Effects of photoperiod and temperature on the timing of bud burst in Norway spruce (Picea abies). Tree Physiol 18:811–816

    Article  PubMed  Google Scholar 

  • Pawłowski TA (2007) Proteomics of European beech (Fagus sylvatica L.) seed dormancy breaking: Influence of abscisic and gibberellic acids. Proteomics 7:2246–2257

    Article  PubMed  Google Scholar 

  • Pawłowski TA (2009) Proteome analysis of Norway maple (Acer platanoides L.) seeds dormancy breaking and germination: influence of abscisic and gibberellic acids. BMC Plant Biol 9:48

    Article  PubMed  Google Scholar 

  • Qin L, Prins P, Jones JT, Popeijus H, Smant G, Bakker J, Helder J (2001) GenEST, a powerful bidirectional link between cDNA sequence data and gene expression profiles generated by cDNA-AFLP. Nucleic Acids Res 29:1616–1622

    Article  PubMed  CAS  Google Scholar 

  • Rohde A, Van Montagu M, Boerjan W (1999) The ABSCISIC ACID–INSENSITIVE 3 (ABI3) gene is expressed during vegetative quiescence processes in Arabidopsis. Plant Cell Environ 22:261–270

    Article  CAS  Google Scholar 

  • Rose JKC, Bennett AB (1999) Cooperative disassembly of the cellulose–xyloglucan network of plant cell walls: parallels between cell expansion and fruit ripening. Trends Plant Sci 4:176–183

    Article  PubMed  Google Scholar 

  • Ruttink T, Arend M, Morreel K, Storme V, Rombauts S, Fromm J, Bhalerao RP, Boerjan W, Rohde A (2007) A molecular timetable for apical bud formation and dormancy induction in poplar. Plant Cell 19:2370–2390

    Article  PubMed  CAS  Google Scholar 

  • Samish RM (1954) Dormancy in woody plants. Ann Rev Plant Physiol 5:183–204

    Article  CAS  Google Scholar 

  • Scoccianti V, Corsi D, Magnani M (1997) Ubiquitin conjugation to endogenous proteins in the dormant tuber of Helianthus tuberosus and during the first cell cycle. Physiol Plant 101:77–85

    Article  CAS  Google Scholar 

  • Šebánek J (2003) Dormance a senescence. In: Procházka S, Macháčková I, Krekule J, Šebánek J. (eds) Fyziologie rostlin. Praha, ACADEMIA, pp 388–400

  • Sylvén N (1940) Lang- och kortdagstyper av de svenska skogstraden. (Longday and shortday types of Swedish forest trees.)—Medd. Foren. Vaxtfor5dling Skogstrad. Svensk Papperstidning 43:317–324, 332–342, 350–354 (English summary: 351–354)

  • Topp BL, Sherman WB, Raseira MCB (2008) Low-chill cultivar development. In: Layne DR, Bassi D (eds) The peach botany, production and uses. Cabi, Wallingford, UK, pp 106–138

  • Tryon MEL, Harmer SL (2008) “XAP5 CIRCADIAN TIMEKEEPER coordinates light signals for proper timing of photomorphogenesis and the circadian clock in Arabidopsis. Plant Cell 20:1244–1259

    Article  Google Scholar 

  • Vachůn Z (2003) Phenophases of blossoming and picking maturity and their relationships in twenty apricot genotypes for a period of 6 years. Hort Sci 30:43–50

    Google Scholar 

  • Visser K, Kijne JW, Wang M (1999) GTP binding activity of membrane proteins in isolated barley embryo is enhanced by abscisic acid. Plant Sci 148:139–145

    Article  CAS  Google Scholar 

  • Weiser CJ (1970) Cold resistance and injury in woody plants. Science 169:1269–1278

    Article  PubMed  CAS  Google Scholar 

  • Welling A, Palva ET (2006) Molecular control of cold acclimation in trees. Physiol Plant 127:167–181

    Article  CAS  Google Scholar 

  • Xiao X, Li H, Tang C (2009) A silver-staining cDNA-AFLP protocol suitable for transcript profiling in the latex of Hevea brasiliensis (para rubber tree). Mol Biotechnol 42:91–99

    Article  PubMed  CAS  Google Scholar 

  • Yakovlev IA, Fossdal CG, Johnsen O, Junttila O, Skroppa T (2006) Analysis of gene expression during bud burst initiation in Norway spruce via ESTs from subtracted cDNA libraries. Tree Genet Genomes 2:39–52

    Article  Google Scholar 

  • Yamane H, Kasiwa Y, Kakehei E, Yonemori K, Mori H, Hayashi K, Iwamoto K, Tao R, Kataoka I (2006) Differential expression of dehydrin in flower buds of two Japanese apricot cultivars requiring different chilling requirements for bud break. Tree Physiol 26:1559–1563

    Article  PubMed  CAS  Google Scholar 

  • Yooyongwech S, Sugaya S, Sekozawa Y, Gemma H (2009) Differential adaptation of high- and low-chill dormant peaches in winter through aquaporin gene expression and soluble sugar content. Plant Cell Rep 28:1709–1715

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Sreenivasulu N, Weschke W, Stein N, Rudd S, Radchuk V, Potokina E, Schulz U, Schweizer P, Zierold U, Langridge P, Varshney RK, Wobus U, Graner A (2004) Large-scale analysis of the barley transcriptome based on expressed sequence tags. Plant J 40:276–290

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the Faculty of Horticulture; Mendel University in Brno for awarding an internal grant from its special purpose resources—Sequencing of genes correlated with the exit of apricot flower buds from endogenous dormancy. No. 5/2009/591. This research has partly been supported by the National Programme for Conservation and Utilization of Plant Genetic Resources and Agro-biodiversity Ministry of Agriculture, No. 20139/2006-13020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Čechová.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Čechová, J., Baránek, M., Krška, B. et al. Screening of differentially expressed genes during the end of endogenous dormancy of flower buds in Prunus armeniaca L.. Plant Growth Regul 67, 141–150 (2012). https://doi.org/10.1007/s10725-012-9671-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-012-9671-9

Keywords

Navigation