Skip to main content
Log in

Antioxidant response to drought, cold and nutrient stress in two ploidy levels of tobacco plants: low resource requirement confers polytolerance in polyploids?

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Most polyploids can survive better under multiple stress conditions than their corresponding diploid; however, there is no established theory that can adequately explain this phenomenon at the molecular or physiological level. Here, we attempt to explain this interesting but puzzling problem from the perspectives of resource requirement and antioxidant response. In this experiment, we compared the antioxidative response and stomatal behavior of two ploidy levels of tobacco plants (tetraploid and its colchicine-induced octaploid) under drought, cold and nutrient deficit stress conditions. In comparison to tetraploid, less H2O2 accumulation and stronger reactive oxygen scavenging capacity (antioxidant enzyme activities and DPPH radical scavenging capacity) were observed in octaploid under stress free or stressful conditions. In accordant with these, less oxidative damage and higher redox values (ASC/DHA and GSH/GSSG) were also monitored in the octaploid than in the tetraploid under same conditions. In addition, a higher net rate of photosynthesis (Pn) and slower decline in the concentration of intercellular CO2(Ci) were measured in the octaploid compared to the tetraploid following high concentration ABA treatment (20 mg L−1), with more severe oxidative damage observed in the tetraploid than in the octaploid. On the basis of the resource acquisition theory, we consider that any environmental stress that can lower plant resource availability would favor survival in a slow-growing polyploid compared with that in a fast-growing diploid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ROS:

Reactive oxygen species

H2O2 :

Hydrogen peroxide

SOD:

Superoxide dismutase

CAT:

Catalase

APX:

Ascorbate peroxidase

GR:

Glutathione reductase

Pn:

Net photosynthesis rate

Gs:

Stomatal conductance

Ci:

Intercellular CO2 concentration

ABA:

Abscisic acid

TBARS:

Thiobarbituric acid reactive substances

ASC:

Reduced ascorbate

DHA:

Oxidized ascorbate

GSH:

Reduced glutathione

GSSG:

Oxidized glutathione

DPPH:

α,α-diphenyl-β-picrylhydrazyl

FRAP:

Ferric reducing ability of plasma

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  PubMed  CAS  Google Scholar 

  • Allario T, Brumos J, Colmenero-Flores JM, Tadeo F, Froelicher Y, Talon M, Navarro L, Ollitrault P, Morillon R (2011) Large changes in anatomy and physiology between diploid Rangpur lime (Citrus limonia) and its autotetraploid are not associated with large changes in leaf gene expression. J Exp Bot 62:2507–2519

    Article  PubMed  CAS  Google Scholar 

  • Baena-González E, Sheen J (2008) Convergent energy and stress signaling. Trends Plant Sci 13:474–482

    Article  PubMed  Google Scholar 

  • Baxter CJ, Redestig H, Schauer N, Repsilber D, Patil KR, Nielsen J, Selbig J, Liu J, Fernie AR, Sweetlove LJ (2007) The metabolic response of heterotrophic arabidopsis cells to oxidative stress. Plant Physiol 143:312–325

    Article  PubMed  CAS  Google Scholar 

  • Benzie IF, Strain J (1996) The ferric reducing ability of plasma (FRAP) as a measure of ‘antioxidant power’: the FRAP assay. Anal Biochem 239:70–76

    Article  PubMed  CAS  Google Scholar 

  • Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179–194

    Article  PubMed  CAS  Google Scholar 

  • Brand-williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. Food Sci Technol 28:25–30

    CAS  Google Scholar 

  • Causin HF, Roberts IN, Criado MV, Gallego SM, Pena LB, Ríos MC, Barneix AJ (2009) Changes in hydrogen peroxide homeostasis and cytokinin levels contribute to the regulation of shade-induced senescence in wheat leaves. Plant Sci 177:698–704

    Article  CAS  Google Scholar 

  • Chandra A, Dubey A (2010) Effect of ploidy levels on the activities of ∆1-pyrroline-5-carboxylate synthetase, superoxide dismutase and peroxidase in Cenchrus species grown under water stress. Plant Physiol Biochem 48:27–34

    Article  PubMed  CAS  Google Scholar 

  • Chapin FS (1980) The mineral nutrition of wild plants. Annu Rev Ecol Syst 11:233–260

    Article  CAS  Google Scholar 

  • Chen ZJ (2010) Molecular mechanisms of polyploidy and hybrid vigor. Trends Plant Sci 15:57–71

    Article  PubMed  CAS  Google Scholar 

  • Chen ZJ, Ha M, Soltis D (2007) Polyploid: genome obesity and its consequences. New Phytol 174:717–720

    Article  PubMed  CAS  Google Scholar 

  • Chow PS, Landhäusser SM (2004) A method for routine measurements of total sugar and starch content in woody plant tissues. Tree Physiol 24:1129–1136

    PubMed  CAS  Google Scholar 

  • Comai L (2005) The advantages and disadvantages of being polyploid. Nature 6:836–846

    CAS  Google Scholar 

  • Couée I, Sulmon C, Gouesbet G, EI Amrani A (2006) Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. J Exp Bot 57:449–459

    Article  PubMed  Google Scholar 

  • DeMaggio AE, Stetler DA (1971) Polyploidy and gene dosage effects on chloroplasts of fern gametophytes. Exp Cell Res 67:287–294

    Article  PubMed  CAS  Google Scholar 

  • Dhindsa RS, Dhindsa PP, Thorpe TA (1980) Leaf senescence correlated with increased levels of membrane permeability and lipid-peroxidation and decreased levels of superoxide dismutase and catalase. J Exp Bot 32:93–101

    Article  Google Scholar 

  • Ehrendorfer F (1980) Polyploidy and distribution. In: Lewis WH (ed) Polyploidy: biological relevance. Plenum Press, New York, pp 45–60

    Google Scholar 

  • Foreman J, Demidchik V, Bothwell JHF, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JDG, Davies JM, Dolan L (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442–446

    Article  PubMed  CAS  Google Scholar 

  • Fryer MJ, Andrews JR, Oxborough K, Blowers DA, Baker NR (1998) Relationship between CO2 assimilation, photosynthetic electron transport, and active O2 metabolism in leaves of maize in the field during periods of low temperature. Plant Physiol 116:571–580

    Article  PubMed  CAS  Google Scholar 

  • Gay C, Collins J, Gebicki J (1999) Hydroperoxide assay with the ferric-xylenol orange complex. Anal Biochem 273:149–155

    Article  PubMed  CAS  Google Scholar 

  • Godon C, Lagniel G, Lee J, Buhler J, Kieffer S, Perrot M, Boucherie H, Toledano MB, Labarre J (1998) The H2O2 stimulon in Saccharomyces cerevisiae. J Biol Chem 273:22480–22489

    Article  PubMed  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplast. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:180–198

    Google Scholar 

  • Ho I, Wan Y, Widholm JM, Rayburn AL (1990) The use of stomatal chloroplast number for rapid determination of ploidy level in maize. Plant Breed 105:203–210

    Article  Google Scholar 

  • Kim M, Kim H, Kim Y, Baek K, Oh H, Hahn K, Bae R, Lee I, Joung H, Jeon J (2007) Superoxide anion regulates plant growth and tuber development of potato. Plant Cell Rep 26:1717–1725

    Article  PubMed  CAS  Google Scholar 

  • Kondorosi E, Roudier F, Gendreau E (2000) Plant cell-size control: growing by ploidy? Curr Opin Plant Biol 3:488–492

    Article  PubMed  CAS  Google Scholar 

  • Levin DA (1983) Polyploidy and novelty in flowering plants. Amer Nat 122:1–24

    Article  Google Scholar 

  • Levine RL (2002) Carbonyl modified proteins in cellular regulation, aging and disease. Free Radic Biol Med 32:790–796

    Article  PubMed  CAS  Google Scholar 

  • Li W, Biswas D, Xu H, Xu C, Wang X, Liu J, Jiang G (2009a) Photosynthetic responses to chromosome doubling in relation to leaf anatomy in Lonicera japonica subjected to water stress. Funct Plant Biol 36:783–792

    Article  CAS  Google Scholar 

  • Li S, Xue L, Xu S, Feng H, An L (2009b) Hydrogen peroxide acts as a signal molecule in the adventitious root formation of mung bean seedlings. Environ Exp Bot 65:63–71

    Article  CAS  Google Scholar 

  • Magyar G, Kun Á, Oborny B, Stuefer JF (2007) Importance of plasticity and decision-making strategies for plant resource acquisition in spatio-temporally variable environments. New Phytol 174:182–193

    Article  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  PubMed  CAS  Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19

    Article  PubMed  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network in plants. Trends Plant Sci 9:490–498

    Article  PubMed  CAS  Google Scholar 

  • Nagalakshmi N, Prasad MNV (2001) Responses of glutathione cycle enzymes and glutathione metabolism to copper stress in Scenedesmus bijugatus. Plant Sci 160:291–299

    Article  PubMed  CAS  Google Scholar 

  • Nakamura A, Takashima S, Hasegawa H (1993) Simple and efficient chromosome doubling method by colchicine-treatment for haploid plantlets of tobacco. Breed Sci 43:603–612

    Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Neumann PM (2008) Coping mechanisms for crop plants in drought-prone environments. Ann Bot 101:901–907

    Article  PubMed  CAS  Google Scholar 

  • Niinemets Ü (2010) Responses of forest trees to single and multiple environmental stresses from seedlings to mature plants: past stress history, stress interactions, tolerance and acclimation. For Ecol Manage 260:1623–1639

    Article  Google Scholar 

  • Niinemets Ü, Valladares F (2006) Tolerance to shade, drought, and waterlogging of temperate northern hemisphere trees and shrubs. Ecol Monogr 76:521–547

    Article  Google Scholar 

  • Niwa Y, Sasaki Y (2003) Plant self-defense mechanisms against oxidative injury and protection of the forest by planting trees of triploids and tetraploids. Ecotoxicol Environ Saf 55:70–81

    Article  PubMed  CAS  Google Scholar 

  • Nord EA, Lynch JP (2009) Plant phenology: a critical controller of soil resource acquisition. J Exp Bot 60:1927–1937

    Article  PubMed  CAS  Google Scholar 

  • Paucã-Comãnescu M, Clevering OA, Hanganu J, Gridin M (1999) Phenotypic differences among ploidy levels of Phragmites australis growing in Romania. Aquat Bot 64:223–234

    Article  Google Scholar 

  • Prochazkova D, Sairam RK, Srivastava GC, Singh DV (2001) Oxidative stress and antioxidant activity as the basis of senescence in maize leaves. Plant Sci 161:765–771

    Article  CAS  Google Scholar 

  • Reddy AR, Chaitanya KV, Vivekanandan M (2004) Drought-induced response of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161:1189–1202

    Article  CAS  Google Scholar 

  • Rodríguez AA, Grunberg KA, Taleisnik EL (2002) Reactive oxygen species in the elongation zone of maize leaves are necessary for leaf extension. Plant Physiol 129:1627–1632

    Article  PubMed  Google Scholar 

  • Romero-Aranda R, Bondada BR, Syvertsen JP, Grosser JW (1997) Leaf characteristics and net gas exchange of diploid and autotetraploid citrus. Ann Bot 79:153–160

    Article  Google Scholar 

  • Saleh B, Allario T, Dambier D, Ollitrault P, Morillon R (2008) Tetraploid citrus rootstocks are more tolerant to salt stress than diploid. Compt Rend Biol 331:703–710

    Article  Google Scholar 

  • Scheurwater I, Dunnebacke M, Eising R, Lambers H (2000) Respiratory costs and rate of protein turnover in the roots of a fast-growing (Dactylis glomerata L.) and a slow-growing (Festuca ovina L.) grass species. J Exp Bot 51:1089–1097

    Article  PubMed  CAS  Google Scholar 

  • Smith IK, Vierheller TL, Thorne CA (1988) Assay of glutathione reductase in crude tissue homogenates using 5,5′-dithiobis (2-nitobenzoic acid). Anal Biochem 175:408–413

    Article  PubMed  CAS  Google Scholar 

  • Stitt M, Hurry V (2002) A plant for all seasons: alterations in photosynthetic carbon metabolism during cold acclimation in Arabidopsis. Curr Opin Plant Biol 5:199–206

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama S (1998) Differentiation in competitive ability and cold tolerance between diploid and tetraploid cultivars in Lolium perenne. Euphytica 103:55–59

    Article  Google Scholar 

  • Tausz M, Šircelj H, Grill D (2004) The glutathione system as a stress marker in plant ecophysiology is a stress-response concept valid? J Exp Bot 55:1955–1962

    Article  PubMed  CAS  Google Scholar 

  • Tewari RK, Kumar P, Tewari N, Srivastava S, Sharma PN (2004) Macronutrient deficiencies and differential antioxidant responses—influence on the activity and expression of superoxide dismutase in maize. Plant Sci 166:687–694

    Article  CAS  Google Scholar 

  • Tiwari BS, Belenghi B, Levine A (2002) Oxidative stress increased respiration and generation of reactive oxygen species, resulting in ATP depletion, opening of mitochondrial permeability transition, and programmed cell death. Plant Physiol 128:1271–1281

    Article  PubMed  CAS  Google Scholar 

  • Xu W, Zhang S, Wan S, Zhang W (2008) Photosynthetic characteristics of diploid and tetraploid radish (Raphanus sativus L.). Chin J Eco Agric 16:164–167 (in Chinese)

    CAS  Google Scholar 

  • Zhang J, Kirkham MB (1994) Drought-stress-induced changes in activities of superoxide dismutase, catalase, and peroxidase in wheat species. Plant Cell Physiol 35:785–791

    CAS  Google Scholar 

  • Zhu H, Zhang X, Xue Q (2006) Rapid determination of ploidy level of chromosome in tobacco (Nicotiana tabacum). J Agric Biotechnol 14:255–258 (in Chinese)

    Google Scholar 

Download references

Acknowledgments

This study was supported by Natural Science Foundation of China (31171830) and Jiangsu Provincial Priority Academic Program Development of Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hansong Dong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, B., Du, W., Liu, C. et al. Antioxidant response to drought, cold and nutrient stress in two ploidy levels of tobacco plants: low resource requirement confers polytolerance in polyploids?. Plant Growth Regul 66, 37–47 (2012). https://doi.org/10.1007/s10725-011-9626-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-011-9626-6

Keywords

Navigation