Skip to main content
Log in

Effect of mycorrhizal inoculations on heavy metal uptake and stress alleviation of Cajanus cajan (L.) Millsp. genotypes grown in cadmium and lead contaminated soils

  • Original Paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The aim of the present study was to evaluate the role of arbuscular mycorrhizal (AM) fungi on metal uptake, oxidative effects and antioxidant defence mechanisms under cadmium (Cd) and lead (Pb) stresses in Cajanus cajan (L.) Millsp. (pigeonpea). Treatments consisted of two concentrations each of Cd (25 and 50 mg/kg of soil) and Pb (500 and 800 mg/kg of soil) singly as well as in combination. Both metals induced oxidative damage through increased lipid peroxidation, electrolyte leakage and hydrogen peroxide levels, but Cd was found to be more toxic than Pb. Compared with the effects of Cd or Pb alone, the combination of Cd and Pb acted synergistically; however, Pb immobilisation in soil controlled the uptake of Cd in plants. There was a direct correlation between the type of genotype, heavy metal content and oxidative damage in concentration dependent manner. Superoxide dismutase (SOD), catalase (CAT) and peroxidase (POX) increased under stress. The toxicity symptoms of the metal stress were significantly higher in Sel-141-97 genotype when compared with Sel-85 N. The high ratio of glutathione to its oxidised form, glutathione disulfide (GSH/GSSG), could be restored by means of higher glutathione reductase (GR) activity and increased GSH synthesis in mycorrhizal stressed plants. AM inoculations with Glomus mosseae significantly arrested uptake of Cd and Pb into the root system and further translocation into the above ground parts and led to decreased lipid peroxidation and electrolyte leakage. Increased activities of SOD, CAT, POX as well as GR were observed in all mycorrhizal stressed plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. In: Packer L (ed) Methods in enzymology, vol 105. Academic Press, Orlando, pp 121–126

    Google Scholar 

  • Agely AA, Sylvia DM, Ma LQ (2005) Mycorrhizae increases arsenic uptake by the hypraccumulator Chinese brake fern (Pteris vittate L.). J Environ Qual 34:2181–2186

    Article  PubMed  Google Scholar 

  • Aibibu N, Liu Y, Zeng G, Wang X, Chen B, Song H, Xu L (2010) Cadmium accumulation in Vetiveria zizanioides and its effects on growth, physiological and biochemical characters. Bioresour Technol 101:6297–6303

    Article  PubMed  CAS  Google Scholar 

  • Ali MB, Vijpayee P, Tripathi RD, Rai UN, Singh SN, Singh PS (2003) Phytoremediation of lead, nickel, and copper by Salix acmophylla Boiss: role of antioxidant enzymes and antioxidant substances. Bull Environ Contam Toxicol 70:462–469

    Article  PubMed  CAS  Google Scholar 

  • Aloui A, Recorbet G, Gollotte A, Robert F, Valot B, Gianinazzi-Pearson V, Aschi-Smiti S, Dumas-Gaudot E (2009) On the mechanisms of cadmium stress alleviation in Medicago truncatula by arbuscular mycorrhizal symbiosis: a root proteomic study. Proteomics 9:420–433

    Article  PubMed  CAS  Google Scholar 

  • Anderson M (1985) Determination of glutathione and glutathione disulphide in biological samples. Method Enzymol 113:545–548

    Google Scholar 

  • Andrade SAL, Abreu CA, de Abreu MF, Silveira APD (2004) Influence of lead additions on arbuscular mycorrhiza and Rhizobium symbiosis under soybean plants. Appl Soil Ecology 26:123–131

    Article  Google Scholar 

  • Anjum NA, Umar S, Ahmad A, Iqbal M (2008) Responses of components of antioxidant system in moongbean genotypes to cadmium stress. Commun Soil Sci Plant Anal 39:2469–2483

    Article  CAS  Google Scholar 

  • AOAC (1990) Official method of analysis of the association of analytical chemists, vol 1, 15th edn. Association of analytical chemists, Virginia

    Google Scholar 

  • Bowler C, Van Montagu M, Inze D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol 43:81–116

    Article  Google Scholar 

  • Castillo FI, Penel I, Greppin H (1984) Peroxidase release induced by ozone in Sedum album leaves. Plant Physiol 74:846–851

    Article  PubMed  CAS  Google Scholar 

  • Chaoui A, Jarrar B, El Ferjani E (2004) Effects of cadmium and copper on peroxidase, NADH oxidase and IAA oxidase activities in cell wall, soluble and microsomal membrane fractions of pea roots. J Plant Physiol 161:1225–1234

    Article  PubMed  CAS  Google Scholar 

  • Chapman HD, Pratt PF (1961) Methods of analysis for soil plant and waters. Division of agricultural sciences, University of California, Berkeley, CA, pp 150–210

    Google Scholar 

  • Citterio S, Prato N, Fumagalli P, Aina R, Massa N, Santagostino A, Sgorbati S, Berta G (2005) The arbuscular mycorrhizal fungus Glomus mosseae induces growth and metal accumulation changes in Cannabis sativa L. Chemosphere 59:21–29

    Article  PubMed  CAS  Google Scholar 

  • Debiane D, Garcon G, Verdin A, Fontaine J, Durand R, Grandmougin-Ferjani A, Shirali P, Lounes-Hadj Sahraoui A (2008) In vitro evaluation of the oxidative stress and genotoxic potentials of anthracene on mycorrhizal chicory roots. Environ Exp Bot 64:120–127

    Article  CAS  Google Scholar 

  • Dhindsa RS, Plumb-Dhindsa P, Throne TA (1981) Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation and decreased levels of superoxide dismutase and catalase. J Exp Bot 32:93–101

    Article  CAS  Google Scholar 

  • Ekmekci Y, Tanyolac D, Ayhan B (2009) A crop tolerating oxidative stress induced by excess lead: maize. Acta Physiol Plant 31:319–330

    Article  CAS  Google Scholar 

  • Fatima RA, Ahmad M (2005) Certain antioxidant enzymes of Allium cepa as biomarkers for the detection of toxic heavy metals in wastewater. Sci Total Environ 346:256–273

    Article  PubMed  CAS  Google Scholar 

  • Garg N, Aggarwal N (2011) Effects of interactions between cadmium and lead on growth, nitrogen fixation, phytochelatin, and glutathione production in mycorrhizal Cajanus cajan (L.) Millsp. J Plant Growth Regul 30:286–300

    Article  CAS  Google Scholar 

  • Garg N, Chandel S (2010) Arbuscular mycorrhizal networks: process and functions. A review. Agron Sustain Dev 30:581–599

    Article  CAS  Google Scholar 

  • Giri B, Kapoor R, Mukherji KG (2007) Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues. Microbial Ecol 54:753–760

    Article  CAS  Google Scholar 

  • Gopi R, Jaleel CA, Sairam R, Lakshamanam GMA, Gomathinayagam M, Paneerselvam R (2007) Differential effects of hexaconazole and paclobutrazol on biomass, electrolyte leakage, lipid peroxidation and antioxidant potential of Daucus carota L. Colloids Surf B Biointerfaces 60:180–186

    Article  PubMed  CAS  Google Scholar 

  • Gupta DK, Nicolosa FT, Schetinger MRC, Rossato LV, Pereira LB, Castro GY, Srivastava S, Tripathi RD (2009) Antioxidant defence mechanism in hydroponically grown Zea mays seedlings under moderate lead stress. J Hazard Mater 172:479–484

    Article  PubMed  CAS  Google Scholar 

  • Haliwell B (2006) Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol 141:312–322

    Article  Google Scholar 

  • Hassan JM, Shao G, Zhang G (2005) Influence of cadmium toxicity on growth and antioxidant enzyme activity in rice cultivars with different grain cadmium accumulation. J Plant Nutr 28:1259–1270

    Article  CAS  Google Scholar 

  • Heath RL, Packer I (1968) Photoperoxidation in isolated chloroplast I, Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  PubMed  CAS  Google Scholar 

  • Iqbal N, Masood A, Nazar R, Syeed S, Khan NA (2010) Photosynthesis, growth and antioxidant metabolism in Mustard (Brassica juncea L.) cultivars differing in cadmium tolerance. Agric Sci China 9(4):519–527

    Article  CAS  Google Scholar 

  • Ishida A, Ookubu K, Ono K (1987) Formation of hydrogen peroxide by NAD(P)H oxidation with isolated cell wall-associated peroxidase from cultured liverwort cells, Marchantia polymorpha L. Plant Cell Physiol 28:723–726

    CAS  Google Scholar 

  • Jaleel CA, Gopi R, Lakshmanan GMA, Panneerselvam R (2006) Triadimephon induced changes in the antioxidant metabolism and ajmalicine production in Catharanthus roseus (L.). G Don Plant Sci 171:271–276

    Article  CAS  Google Scholar 

  • Jin P, Ma JM, Yang KJ (2002) Effect of soaking of Hg2+ on wheat during its germination and seedling growth. J Henan Norm Univ (Nat Sci) 30(4):81–84

    CAS  Google Scholar 

  • Keser G, Saygideger S (2010) Effects of lead on the activities of antioxidant enzymes in Watercress, Nasturium officinale R. Br. Biol Trace Elem Res 137:235–243

    Article  PubMed  CAS  Google Scholar 

  • Khade SW, Adholeya A (2007) Feasible bioremediation through arbuscular mycorrhizal fungi imparting heavy metal tolerance: a retrospective. Biorem J 11(1):33–43

    Article  CAS  Google Scholar 

  • Khan NA, Ahmad I, Singh S, Nazar R (2006) Variation in growth, photosynthesis, and yield of five wheat cultivars exposed to cadmium stress. World J Agric Sci 2(2):223–226

    Google Scholar 

  • Kopyra M, Gwozdz EA (2003) Nitric oxide stimulates seed germination and counteracts the inhibitory effect of heavy metals and salinity on root growth of Lupinus luteus. Plant Physiol Biochem 41:1011–1017

    Article  CAS  Google Scholar 

  • Li XL, Feng G (2001) Ecology and physiology of arbuscular mycorrhiza. Huawen Press, Beijing

    Google Scholar 

  • Lin R, Wang X, Luo Y, Du W, Guo H, Yin D (2007) Effects of soil cadmium on growth, oxidative stress and antioxidant system in wheat seedlings (Triticum aestivum L.). Chemosphere 69:89–98

    Article  PubMed  CAS  Google Scholar 

  • Metwally A, Safronova VI, Belimov AA, Dietz KJ (2005) Genotypic variation in response to cadmium toxicity in Pisum sativum L. J Exp Bot 56:167–178

    PubMed  CAS  Google Scholar 

  • Miransari M (2010) Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stress. Plant Biol 12(4):563–569

    PubMed  CAS  Google Scholar 

  • Mishra S, Srivastava S, Tripathi RD, Govindarajan R, Kuriakose SV, Prasad MNV (2006) Phytochelatin synthesis and response of antioxidants during cadmium stress in Brassica monnieri L. Plant Physiol Biochem 44:25–37

    Article  PubMed  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  PubMed  CAS  Google Scholar 

  • Moldovan L, Moldovan NI (2004) Oxygen free radicals and redox biology of organelles. Histochem Cell Biol 122:395–412

    Article  PubMed  CAS  Google Scholar 

  • Nelson DW, Sommers LE (1973) Determination of total nitrogen in plant material. Agron J 65:109–112

    Article  CAS  Google Scholar 

  • Noctor G, Gomez L, Vanacker H, Foyer CH (2002) Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostatis and signalling. J Exp Biol 53(372):1283–1304

    CAS  Google Scholar 

  • Ozturk L, Eker S, Ozkutlu F (2003) Effect of cadmium on growth and concentrations of cadmium, ascorbic acid and sulphydryl groups in durum wheat cultivars. Turk J Agric For 27:161–168

    CAS  Google Scholar 

  • Piotrowska A, Bajguz A, Godlewska-Zylkiewicz B, Zambrzycka E (2010) Changes in growth, biochemical components, and antioxidant activity I aquatic plant Wolffia arrhiza (Lemnaceae) exposed to cadmium and lead. Arch Environ Contam Toxicol 58:594–604

    Article  PubMed  CAS  Google Scholar 

  • Punamiya P, Datta R, Sarkar D, Barber S, Patel M, Das P (2010) Symbiotic role of Glomus mosseae in phytoextraction of lead in vetiver grass (Chrysopogon zizanioides L.). J Hazard Mater 177:465–474

    Article  PubMed  CAS  Google Scholar 

  • Qadir S, Qureshi M, Javed S, Abdin MZ (2004) Genotypic variation in phytoremediation potential of Brassica juncea cultivars exposed to Cd stress. Plant Sci 167:171–181

    Article  Google Scholar 

  • Radotic K, Ducic T, Mutavdzic D (2000) Changes in peroxidase activity and isoenzymes in spruce needles after exposure to different concentrations of cadmium. Environ Exp Bot 44:105–114

    Article  PubMed  CAS  Google Scholar 

  • Reddy AM, Kumar SG, Jyothsnakumari G, Thimmanaik S, Sudhakar C (2005) Lead induced changes in antioxidant metabolism of horsegram (Macrotyloma uniform (Lam.) Verdc.) and bengalgram (Cicer arietinum L.). Chemosphere 60:97–104

    Article  PubMed  CAS  Google Scholar 

  • Rivera-Becerril F, van Tuinen D, Martin-Laurent F, Metwally A, Dietz KJ, Gianinazzi S, Gianinazzi-Pearson V (2005) Molecular changes in Pisum sativum L. roots during arbuscular mycorrhiza buffering of cadmium stress. Mycorrhiza 16:51–60

    Article  PubMed  CAS  Google Scholar 

  • Seregin IV, Kozhevnikova AD, Kazyumina EM, Ivanov VB (2003) Nickel toxicity and distribution in maize roots. Russ J Plant Physiol 50(5):711–717

    Article  CAS  Google Scholar 

  • Shah K, Kumar RG, Verma S, Dubey RS (2001) Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Sci 161(6):1135–1144

    Article  CAS  Google Scholar 

  • Sharma P, Dubey RS (2004) Ascorbate peroxidase from rice seedlings: properties of enzyme isoforms, effects of stresses and protective roles of osmolytes. Plant Sci 167:541–550

    Article  CAS  Google Scholar 

  • Singh R, Tripathi RD, Dwivedi S, Kumar A, Trivedi PK, Chakrabarty D (2010) Lead bioaccumulation potential of an aquatic microphyte Najas indica are related to antioxidant system. Bioresour Technol 101:3025–3032

    Article  PubMed  CAS  Google Scholar 

  • Smith IK, Vierheller TL, Thorne CA (1988) Assay of glutathione reductase in crude tissue homogenates using 5, 5′-dithiobis (2-nitrobenzoic acid). Anal Biochem 175:408–413

    Article  PubMed  CAS  Google Scholar 

  • Srivastava S, Tripathi RD, Dwivedi UN (2004) Synthesis of phytochelatins and modulation of antioxidants in response to cadmium stress in Cuscuta reflexa-an angiospermic parasite. J Plant Physiol 161:665–674

    Article  PubMed  CAS  Google Scholar 

  • Szalai G, Kellos T, Galiba G, Kocsy G (2009) Glutathione as an antioxidant and regulatory molecule in plants under abiotic stress conditions. J Plant Growth Regul 28:66–80

    Article  CAS  Google Scholar 

  • Tamas L, Valentovicova K, Haluskova L, Huttova J, Mistrik I (2009) Effect of cadmium on the distribution of hydroxyl radical, superoxide and hydrogen peroxide in barley root tip. Protoplasma 236:67–72

    Article  PubMed  CAS  Google Scholar 

  • Trotta A, Falaschi P, Cornara L, Minganti V, Fusconi A, Drava G, Berta G (2006) Arbuscular mycorrhizae increase the arsenic translocation factor in the As hyperaccumulating fern Pteris vittata L. Chemosphere 65:74–81

    Article  PubMed  CAS  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidative systems in acid rain treated bean plants. Plant Sci 151:59–66

    Article  CAS  Google Scholar 

  • Verma S, Dubey RS (2003) Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci 164:645–655

    Article  CAS  Google Scholar 

  • Vivas A, Azcon R, Biro B, Barea JM, Ruiz-Lozano JM (2003) Influence of bacterial strains isolated from lead-polluted soil and their interactions with arbuscular mycorrhizae on the growth of Trifolium pretense L. under lead toxicity. Can J Microbiol 49:577–588

    Article  PubMed  CAS  Google Scholar 

  • Walkley A (1947) A critical examination of a rapid method for determining organic carbon in soils: effects of variations in digestion conditions and of organic soil constituents. Soil Sci 63:251–263

    Article  CAS  Google Scholar 

  • Wang X, Zhou QX (2003) Distribution of forms for cadmium, lead, copper and zinc in soil land its influences by modifier. J Agr Environ Sci 22:541–545

    CAS  Google Scholar 

  • Wang FY, Lin XG, Yin R (2007) Effect of arbuscular mycorrhizal inoculation on heavy metal accumulation of maize grown in a naturally contaminated soils. Int J Phytorem 9(4):345–353

    Article  Google Scholar 

  • Wu YX, von Tiedemann A (2001) Physiological effects of azoxystrobin and epiconazole on senescence and the oxidative status of wheat. Pestic Biochem Physiol 71:1–10

    Article  CAS  Google Scholar 

  • Wu FB, Zhang GP, Dominy P (2003) Four barley genotypes respond differently to cadmium: lipid peroxidation and activities of antioxidant capacity. Environ Exp Bot 50:67–78

    Article  CAS  Google Scholar 

  • Yang ZX, Liu SQ, Zheng DW, Feng SD (2006) Effects of cadmium, zinc and lead on soil enzyme activities. J Environ Sci 18(6):1135–1141

    Article  Google Scholar 

  • Yu XZ, Gu JD (2007) Metabolic responses of weeping willows to selenate and selenite. Environ Sci Pollut Res 14:510–517

    Article  CAS  Google Scholar 

  • Zacchini M, Rea E, Tullio M, Agazio M (2003) Increased antioxidative capacity in maize calli during and after oxidative stress induced by a long lead treatment. Plant Physiol Biochem 41:49–54

    Article  CAS  Google Scholar 

  • Zhang LZ, Wei N, Wu QX, Ping ML (2007) Antioxidant response of Cucumis sativus L. to fungicide carbendazin. Pestic Biochem Physiol 89:54–59

    Article  CAS  Google Scholar 

  • Zhang F, Zhang H, Wang G, Xu L, Shen Z (2009) Cadmium-induced accumulation of hydrogen peroxide in the leaf apoplast of Phaseolus aureus and Vicia sativa and the roles of different antioxidant enzymes. J Hazard Mater 168:76–84

    Article  PubMed  CAS  Google Scholar 

  • Zhang HH, Tang M, Chen H, Zheng CL, Niu ZC (2010) Effect of inoculation with AM fungi on lead uptake, translocation and stress alleviation of Zea mays L. seedlings planting in soil with increasing lead concentrations. Eur J Soil Biol 46:306–311

    Article  Google Scholar 

  • Zhiqiang XU, Qixing Z, Weitao L (2009) Joint effects of cadmium and lead on seedlings of four Chinese cabbage cultivars in northeastern China. J Environ Sci 21:1598–1606

    Article  Google Scholar 

  • Zhou YQ, Huang SZ, Yu SL, Gu JG, Zhao JZ, Han YL, Fu JJ (2010) The physiological response and sub-cellular localization of lead and cadmium in Iris pseudacorus L. Ecotoxicology 19:69–76

    Article  PubMed  CAS  Google Scholar 

  • Zwiazek JJ, Blake TJ (1991) Early detection of membrane injury in black spruce (Picea mariana). Can J For Res 21:401–404

    Article  Google Scholar 

Download references

Acknowledgments

The financial support provided by the University Grant Commission, New Delhi, India is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neera Garg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garg, N., Aggarwal, N. Effect of mycorrhizal inoculations on heavy metal uptake and stress alleviation of Cajanus cajan (L.) Millsp. genotypes grown in cadmium and lead contaminated soils. Plant Growth Regul 66, 9–26 (2012). https://doi.org/10.1007/s10725-011-9624-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-011-9624-8

Keywords

Navigation