Skip to main content
Log in

Effects of day length, light quality and ethylene on PHYTOCHROME B expression during stem elongation in Stellaria longipes

  • Original Research
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The prairie ecotype of Stellaria longipes (Caryophyllaceae) is highly responsive to light and is a shade avoider. Using the prairie ecotype as a model, we investigated the expression of the PHYTOCHROME B (PHYB) gene in response to different ratios of red to far-red light (R/FR), photoperiods and ethephon, an ethylene producing compound. This was done to examine the potential role of the PHYB and its interaction with ethylene in determining the plasticity of stem elongation. The PHYB gene was constitutively expressed in flowers, leaves, stems, and roots. The relative transcript abundance of the PHYB gene increased significantly upon transfer of etiolated-seedlings to light. The level of the PHYB gene transcript under elevated R/FR (3.5) was significantly higher than that under lower R/FR (0.7) in de-etiolated-mature plants. Long day photoperiod (16 h light/day, LD) significantly promoted stem growth, whereas plants under short day photoperiod (8 h light/day, SD) showed minor elongation. Interestingly, under LD, but not under SD, the level of PHYB mRNA significantly correlated with stem elongation. The plants treated with high concentration of ethephon (10.0 mol m−3) showed a 55% decrease in PHYB transcript within the first 4 days after treatment, and the level of PHYB transcript was significantly lower than that in control plants and the plants treated with a lower concentration of ethephon (0.1 mol m−3). Taken together with our earlier studies related to stem elongation, our results suggest that the level of PHYB gene transcription on day 4 is critical for the initiation of stem elongation. After this stage, a relatively high level of the PHYB gene transcription might be important for maintaining stem elongation of the prairie plants of S. longipes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abeles FB, Morgan PW, Saltveit ME Jr (1992) Ethylene in plant biology, 2nd edn. Academic Press, New York

    Google Scholar 

  • Adam E, Kozma-Bognar L, Kolar C, Schafer E, Nagy F (1996) The tissue-specific expression of a tobacco phytochrome B gene. Plant Physiol 110:1081–1088

    PubMed  CAS  Google Scholar 

  • Alokam S, Chinnappa CC, Reid DM (2002) Red/far-red light mediated stem elongation and anthocyanin accumulation in Stellaria longipes: differential response of alpine and prairie ecotypes. Can J Bot 80:72–81

    Article  CAS  Google Scholar 

  • Aphalo PJ, Ballare CL, Scopel AL (1999) Plant-plant signaling, the shade avoidance response and competition. J Exp Bot 50:1629–1634

    Article  CAS  Google Scholar 

  • Ballare CL (1999) Keeping up with the neighbours: phytochrome sensing and other signaling mechanisms. Trends Plant Sci 4:97–102

    Article  PubMed  Google Scholar 

  • Chinnappa CC, Donald GM, Sasidharan R, Emery RJN (2005) The biology of Stellaria longipes (Caryophyllaceae). Can J Bot 11:1367–1383

    Article  Google Scholar 

  • Choung SDX (1998) Stem elongation plasticity in Stellaria longipes: anatomical and biochemical studies. MSc thesis, University of Calgary, Calgary, Alta, Canada

  • Clack T, Mathews S, Sharrock RA (1994) The phytochrome apoprotein family in Arabidopsis is encoded by five genes: the sequences and expression of PHYD and PHYE. Plant Mol Biol 25:413–427

    Article  PubMed  CAS  Google Scholar 

  • Emery RJN, Reid DM, Chinnappa CC (1994) Phenotypic plasticity of stem elongation in two ecotypes of Stellaria longipes: the role of ethylene and response to wind. Plant Cell Environ 17:691–700

    Article  Google Scholar 

  • Finlayson SA, Lee IJ, Morgan PW (1998) Phytochrome B and the regulation of circadian ethylene production in sorghum. Plant Physiol 116:17–25

    Article  CAS  Google Scholar 

  • Finlayson SA, Lee IJ, Mullet JE, Morgan PW (1999) The mechanism of rhythmic ethylene production in sorghum. The role of phytochrome B and simulated shading. Plant Physiol 119:1083–1089

    Article  PubMed  CAS  Google Scholar 

  • Finlayson SA, Hays DB, Morgan PW (2007) phyB-1 sorghum maintains responsiveness to simulated shade, irradiance and red light : far-red light. Plant Cell Environ 30:952–962

    Article  PubMed  CAS  Google Scholar 

  • Franklin KA, Whitelam GC (2005) Phytochromes and shade avoidance responses in plants. Ann Bot 96:169–175

    Article  PubMed  CAS  Google Scholar 

  • Franklin KA, Praekelt U, Stoddart WM, Billingham OE, Halliday KJ, Whitelam GC (2003) Phytochromes B, D, and E act redundantly to control multiple physiological responses in Arabidopsis. Plant Physiol 131:1340–1346

    Article  PubMed  CAS  Google Scholar 

  • Franklin KA, Allen T, Whitelam GC (2007) Phytochrome A is an irradiance-dependent red light sensor. Plant J 50:108–117

    Article  PubMed  CAS  Google Scholar 

  • Goeschl JD, Pratt HK, Bonner BA (1967) An effect of light on the production of ethylene and the growth of the plumular portion of etiolated pea seedlings. Plant Physiol 42:1077–1080

    Article  PubMed  CAS  Google Scholar 

  • Hauser BA, Pratt LH, Cordonnier-Pratt MM (1997) Absolute quantification of five phytochrome transcripts in seedlings and mature plants of tomato (Solanum lycopersicum L.). Planta 201:379–387

    Article  PubMed  CAS  Google Scholar 

  • Hauser BA, Cordonnier-Pratt MM, Pratt LH (1998) Temporal and photoregulated expression of five tomato phytochrome genes. Plant J 14:431–439

    Article  PubMed  CAS  Google Scholar 

  • Heyer A, Gatz C (1992) Isolation and characterization of a cDNA clone coding for potato type B phytochrome. Plant Mol Biol 20:589–600

    Article  PubMed  CAS  Google Scholar 

  • Imaseki H, Pjon C-H, Furya M (1971) Phytochrome action in oryza sativa L. Plant Physiol 48:241–244

    Article  PubMed  CAS  Google Scholar 

  • Jackson MB (1985) Ethylene and responses of plants to soil waterlogging and submergence. Annu Rev Plant Physiol 36:145–174

    Article  CAS  Google Scholar 

  • Johnson E, Bradley M, Harberd NP, Whitelam GC (1994) Photoresponses of light-grown phyA mutants of Arabidopsis. Plant Physiol 105:141–149

    Article  PubMed  CAS  Google Scholar 

  • Kurepin LV, Walton LJ, Reid DM (2007) Interaction of red to far red light ratio and ethylene in regulating stem elongation of Helianthus annuus. Plant Growth Regul 51:53–61

    Article  CAS  Google Scholar 

  • Li W, Chinnappa CC (2003) The phytochrome gene family in the Stellaria longipes complex. Int J Plant Sci 164:657–673

    Article  CAS  Google Scholar 

  • Li W, Chinnappa CC (2004) Isolation and characterization of PHYC gene from Stellaria longipes: differential expression regulated by different red/far-red light ratios and photoperiods. Planta 220:318–330

    Article  PubMed  CAS  Google Scholar 

  • Li W, Song ZH, Sasidharan R, Chinnappa CC (2009) Light and shade signals regulate four phytochrome A genes in Stellaria longipes. Int J Plant Sci 170:164–173

    Article  CAS  Google Scholar 

  • Macdonald SE, Chinnappa CC, Reid DM (1984) Studies on the Stellaria longipes complex: phenotypic plasticity. I. Response of stem elongation to temperature and photoperiod. Can J Bot 62:414–419

    Article  Google Scholar 

  • Mathews S, Sharrock RA (1997) Phytochrome gene diversity. Plant Cell Environ 20:666–671

    Article  CAS  Google Scholar 

  • Monte E, Alonso JM, Ecker JR, Zhang Y, Li X, Young J, Austin-Phillips S, Quail PH (2003) Isolation and characterization of phyC mutants in Arabidopsis reveal complex crosstalk between phytochrome signaling pathways. Plant Cell 15:1962–1980

    Article  PubMed  CAS  Google Scholar 

  • Pierik R, Visser EJW, de Kroon H, Voesenek LACJ (2003) Ethylene is required in tobacco to successfully complete with proximate neighbours. Plant Cell Environ 26:1229–1234

    Article  CAS  Google Scholar 

  • Pierik R, Cuppens MLC, Voesenek LACJ, Visser EJW (2004) Interactions between ethylene and gibberellins in phytochrome-mediated shade avoidance responses in tobacco. Plant Physiol 136:2928–2936

    Article  PubMed  CAS  Google Scholar 

  • Pratt LH, Cordonnier-Pratt MM, Kelmenson PM, Lazarova GI, Kubota T, Alba RM (1997) The phytochrome gene family in tomato (Solanum lycopersicum L.). Plant Cell Environ 20:672–677

    Article  CAS  Google Scholar 

  • Quail PH (1994) Phytochrome genes and their expression. In: Kendrick RE, Kronenberg GHM (eds) Photomorphogenesis in plants, 2nd edn. Kluwer Academic Publisher, Amsterdam, pp 71–104

    Google Scholar 

  • Raskin I, Kende H (1984) The role of gibberellin in the growth response of submerged deep water rice. Plant Physiol 76:947–950

    Article  PubMed  CAS  Google Scholar 

  • Reed JW, Nagpal P, Poole DS, Furuya M, Chory J (1993) Mutations in the gene for the red/far red light photoreceptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development. Plant Cell 5:147–157

    Article  PubMed  CAS  Google Scholar 

  • Reed JW, Nagatani A, Elich TD, Fagan M, Chory J (1994) Phytochrome A and phytochrome B have overlapping but distinct functions in Arabidopsis development. Plant Physiol 104:1139–1149

    PubMed  CAS  Google Scholar 

  • Rijnders JGHM, Yang YY, Kamiya Y, Takahashi N, Barendse GWM, Blom CWPM, Voesenek LACJ (1997) Ethylene enhances gibberellin levels and petiole sensitivity in flooding-tolerant Rumex palustris but not in flooding-intolerant R. acetosa. Planta 2003:20–25

    Google Scholar 

  • Samimy C (1978) Effect of light on ethylene production and hypocotyls growth of soybean seedlings. Plant Physiol 61:772–774

    Article  PubMed  CAS  Google Scholar 

  • Sharrock RA, Quail PH (1989) Novel phytochrome sequences in Arabidopsis thaliana: structure, evolution, and differential expression of a plant regulatory photoreceptor family. Genes Dev 3:1745–1757

    Article  PubMed  CAS  Google Scholar 

  • Smith H (2000) Phytochromes and light signal perception by plants–an emerging synthesis. Nature 407:585–591

    Article  PubMed  CAS  Google Scholar 

  • Takano M, Kanegae H, Shinomura T, Miyao A, Hirochika H, Furuya M (2001) Isolation and characterization of rice phytochrome A mutants. Plant Cell 13:521–534

    Article  PubMed  CAS  Google Scholar 

  • Takano M, Inagaki N, Xie X, Yuzurihara N, Hihara F, Ishizuka T, Yano M, Nishimura M, Miyao A, Hirochika H, Shinomura T (2005) Distinct and cooperative functions of phytochromes A, B, and C in the control of deetiolation and flowering in rice. Plant Cell 17:3311–3325

    Article  PubMed  CAS  Google Scholar 

  • Toth R, Kevei EE, Hall A, Millar AJ, Nagy F, Kozma-Bognar L (2001) Circadian clock-regulated expression of phytochrome and cryptochrome genes in Arabidopsis. Plant Physiol 127:1607–1616

    Article  PubMed  CAS  Google Scholar 

  • Tuinen AV, Kerckhoffs LHJ, Nagatani A, Kendrick RE, Koornneef M (1995) Far-red light-insensitive, phytochrome A-deficient mutants of tomato. Mol Gen Genet 246:133–141

    Article  PubMed  Google Scholar 

  • Vangronsveld J, Clijsters H, Van Poucke M (1988) Phytochrome-controlled ethylene biosynthesis of intact etiolated bean seedlings. Planta 174:19–24

    Article  CAS  Google Scholar 

  • Weller JL, Murfet IC, Reid JB (1997) Pea mutants with reduced sensitivity to far-red light define an important role for phytochrome A in day-length detection. Plant Physiol 114:1225–1236

    PubMed  CAS  Google Scholar 

  • Whitelam GC, Devlin PF (1997) Roles of different phytochromes in Arabidopsis photomorphogenesis. Plant Cell Environ 20:752–758

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Dominic Rosso for valuable comments on this manuscript. This work is supported by a Discovery grant from the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenze Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, W., Song, Z., Neil Emery, R.J. et al. Effects of day length, light quality and ethylene on PHYTOCHROME B expression during stem elongation in Stellaria longipes . Plant Growth Regul 63, 291–300 (2011). https://doi.org/10.1007/s10725-010-9529-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-010-9529-y

Keywords

Navigation