Skip to main content
Log in

The impact of supplemental carbon sources on Arabidopsis thaliana growth, chlorophyll content and anthocyanin accumulation

  • Original Paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

This research explores the impacts of a broad range of supplemental carbon sources on growth and development of Arabidopsis thaliana. Parameters measured include dark-germinated hypocotyl length, light-germinated root growth, rosette growth, chlorophyll concentration and anthocyanin content. Treatment sugars include sucrose, maltose, d-glucose, d-fructose, l-arabinose, l-fucose, d-galactose, d-mannose, l-rhamnose and d-xylose each supplied at 4, 20 or 100 mM. This comparison of the effect of different carbon sources on multiple parameters and under identical conditions showed that every carbon source had unique qualitative and quantitative effects on Arabidopsis growth and development. Root growth was particularly sensitive to supplemental carbon source. Growth on 100 mM sucrose, maltose, glucose or xylose stimulated root growth by ~100%. Growth on arabinose, fucose, galactose, mannose or rhamnose inhibited root growth by 50% or more. Several sugars that strongly inhibited root growth had either no effect (galactose and fucose) or a positive effect (arabinose) on hypocotyl elongation and rosette growth. Rhamnose was the only carbon source that inhibited hypocotyl elongation across all concentrations. Sucrose, maltose, glucose, fructose, arabinose or xylose stimulated rosette growth by ~50%. Chlorophyll content was strongly reduced by mannose while sucrose, glucose, galactose and rhamnose caused smaller reductions. Anthocyanin accumulation was strongly induced by both galactose and mannose. Only mannose impacted all parameters across all concentrations. Based on these data it can be concluded that the effect of each carbon source on Arabidopsis growth and development is specific in terms of both magnitude and the parameters impacted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdin OA, Zhou X, Coulman BE, Cloutier D, Faris MA, Smith DL (1998) Effect of sucrose supplementation by stem injection on the development of soybean plants. J Exp Bot 49:2013–2018

    Article  CAS  Google Scholar 

  • Baena-Gonzalez E, Sheen J (2008) Convergent energy and stress signaling. Trends Plant Sci 9:474–482

    Article  Google Scholar 

  • Baskin TI, Remillong EL, Wilson JE (2001) The impact of mannose and other carbon sources on the elongation and diameter of the primary root of Arabidopsis thaliana. Aust J Plant Physiol 28:481–488

    CAS  Google Scholar 

  • Bush DR (1999) Sugar transporters in plant biology. Curr Opin Plant Biol 2:187–191

    Article  CAS  PubMed  Google Scholar 

  • Büttner M, Truernit E, Baier K, Scholz-Starke J, Sontheim M, Lauterbach C, Huss VAR, Sauer N (2000) AtSTP3, a green-leaf specific, low affinity monosaccharide-H+ symporter of Arabidopsis thaliana. Plant Cell Environ 23:175–184

    Article  Google Scholar 

  • Carpita N, McCann N (2000) The cell wall. In: Buchanan B, Gruissem W, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 52–108

    Google Scholar 

  • Carrari F, Urbanczyk-Wochniak E, Willmitzer L, Fernie AR (2003) Engineering central metabolism in crop species: learning the system. Metab Eng 5:191–200

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Ji F, Xie H, Liang J, Zhang J (2006) The regulator of G-protein signaling proteins involved in sugar and abscisic acid signaling in Arabidopsis seed germination. Plant Physiol 140:302–310

    Article  CAS  PubMed  Google Scholar 

  • Chiou TJ, Bush DR (1998) Sucrose is a signal molecule in assimilate partitioning. Proc Natl Acad Sci USA 95:4784–4788

    Article  CAS  PubMed  Google Scholar 

  • Ciereszko I, Kleczkowski LA (2002) Glucose and mannose regulate the expression of a major sucrose synthase gene in Arabidopsis via hexokinase-dependent mechanisms. Plant Physiol Bioch 40:907–911

    Article  CAS  Google Scholar 

  • Collett CE, Harberd NP, Leyser O (2000) Hormonal interactions in the control of Arabidopsis hypocotyl elongation. Plant Physiol 124:553–561

    Article  CAS  PubMed  Google Scholar 

  • Coruzzi G, Bush DR (2001) Nitrogen and carbon nutrient and metabolite signaling in plants. Plant Physiol 125:61–64

    Article  CAS  PubMed  Google Scholar 

  • Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6:850–861

    Article  CAS  PubMed  Google Scholar 

  • Cross JM, von Korff M, Altmann T, Bartzenko L, Sulpice R, Gibon Y, Palacios N, Stitt M (2006) Natural variation in carbon–nitrogen interactions: changes of metabolite levels and enzyme activities across 24 Arabidopsis thaliana accessions. Plant Physiol 142:1574–1588

    Article  CAS  PubMed  Google Scholar 

  • Dekkers B, Schuumans J, Smeekens S (2004) Glucose delays seed germination in Arabidopsis thaliana. Planta 218:579–588

    Article  CAS  PubMed  Google Scholar 

  • Dennis DT, Blakeley SD (2000) Carbohydrate metabolism. In: Buchanan B, Gruissem W, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 630–675

    Google Scholar 

  • Derbyshire P, Findlay K, McCann MC, Roberts K (2007) Cell elongation in Arabidopsis hypocotyls involves dynamic changes in cell wall thickness. J Exp Bot 57:2079–2089

    Article  Google Scholar 

  • Dolezal O, Cobbett CS (1991) Arabinose kinase deficient mutant of Arabidopsis thaliana. Plant Physiol 96:1255–1260

    Article  CAS  PubMed  Google Scholar 

  • Fagard M, Desnos T, Desprez T, Goubet F, Refregier G, Mouille G, McCann M, Rayon C, Vernhettes S, Höfte H (2000) PROSCUTE1 encodes a cellulose synthase required for normal cell elongation specifically in roots and dark-grown hypocotyls of Arabidopsis. Plant Cell 12:2409–2424

    Article  CAS  PubMed  Google Scholar 

  • Fernie AR, Trethewey RN, Krotzky AJ, Willmitzer L (2004) Metabolite profiling : from diagnostics to systems biology. Nat Rev Mol Cell Biol 5:1–7

    Article  Google Scholar 

  • Fettke J, Eckermann N, Tiessen A, Geigenberger P, Steup M (2005) Identification, subcellular localization and biochemical characterization of water-soluble heteroglycans (SHG) in leaves of Arabidopsis thaliana L: distinct SHG residues in the cytosol and the apoplast. Plant J 43:568–585

    Article  CAS  PubMed  Google Scholar 

  • Fettke J, Chia T, Eckermann N, Smith A, Steup M (2006) A transglucosidase necessary for starch degradation and maltose metabolism in leaves at night acts on cytosolic heteroglycans (SHG). Plant J 46:668–684

    Article  CAS  PubMed  Google Scholar 

  • Fettke J, Hejazi M, Smirnova J, Höchel E, Stage M, Steup M (2009) Eukaryotic starch degradation: integration of plastidial and cytosolic pathways. J Exp Bot 60:2907–2922

    Article  CAS  PubMed  Google Scholar 

  • Gendreau E, Traas J, Desnos T, Grandjean O, Caboche M, Höfte H (1997) Cellular basis of hypocotyl growth in Arabidopsis thaliana. Plant Physiol 114:295–305

    Article  CAS  PubMed  Google Scholar 

  • Genoud T, Métraux J-P (1999) Crosstalk in plant cell signaling: structure and function of the genetic network. Trends Plant Sci 4:503–507

    Article  PubMed  Google Scholar 

  • Gibson SI (2004) Sugar and phytohormone response pathways: navigating a signaling network. J Exp Bot 55:253–264

    Article  CAS  PubMed  Google Scholar 

  • Gibson SI (2005) Control of plant development and gene expression by sugar signaling. Curr Opin Plant Biol 8:93–102

    Article  CAS  PubMed  Google Scholar 

  • Grafahrend-Belau E, Weise S, Koschützi D, Scholz U, Junker BH, Schreiber F (2008) MetaCrop: a detailed database of crop plant metabolism. Nucleic Acids Res 36:D954–D958. doi:10.1093/nar/gkm835

    Article  CAS  PubMed  Google Scholar 

  • Graham IA, Denby KJ, Leaver CJ (1994) Carbon catabolite repression regulates glyoxylate cycle gene expression in cucumber. Plant Cell 6:761–772

    Article  CAS  PubMed  Google Scholar 

  • Grigston JC, Osuna D, Scheible W-R, Liu C, Stitt M, Jones AM (2008) D-glucose sensing by a plasma membrane regulator of G signaling protein, AtRGS1. FEBS Lett 582:3577–3584

    Article  CAS  PubMed  Google Scholar 

  • Gu X, Bar-Peled M (2004) The biosynthesis of UDP-galacturonic acid in plants. Functional cloning and characterization of Arabidopsis UDP-D-glucuronic acid 4-epimerase. Plant Physiol 136:4256–4264

    Article  CAS  PubMed  Google Scholar 

  • Haldrup A, Peterson SG, Okkels FT (1998) The xylose isomerase gene from Thermoanaerobacterium thermosulfurogenes allows effective selection of transgenic plant cells using D-xylose as the selection agent. Plant Mol Biol 37:287–296

    Article  CAS  PubMed  Google Scholar 

  • Harrington GN, Bush DR (2003) The bifunctional role of hexokinase in metabolism and glucose signaling. Plant Cell 15:2493–2496

    Article  CAS  PubMed  Google Scholar 

  • Hemmerlin A, Tritsch D, Hartman M, Pacaud K, Hoeffler J-F, van Dorsselaer A, Rohmer M, Bach TJ (2006) A cytosolic Arabidopsis D-xylulose kinase catalyzes the phosphorylation of 1-deoxy-D-xylulose into a precursor of the plastidial isoprenoid pathway. Plant Physiol 142:441–457

    Article  CAS  PubMed  Google Scholar 

  • Herold A, Lewis DH (1977) Mannose and green plants: occurrence, physiology and metabolism, and use as a tool to study the role of orthophosphate. New Phytol 79:1–40

    Article  CAS  Google Scholar 

  • Herold A, Lewis DH, Walker DA (1976) Sequestration of cytoplasmic orthophosphate by mannose and its differential effect on photosynthetic starch synthesis in C3 and C4 species. New Phytol 76:397–407

    Article  CAS  Google Scholar 

  • Jang JC, Sheen J (1994) Sugar sensing in higher plants. Plant Cell 6:1665–1679

    Article  CAS  PubMed  Google Scholar 

  • Khuri S, Moorby J (1995) Investigations into the role of sucrose in potato cv. Estima microtuber production in vitro. Ann Bot 75:295–303

    Article  CAS  Google Scholar 

  • Kim J, Gross KC, Solomos T (1987) Characterization of the stimulation of ethylene production by galactose in tomato (Lycopersicum esculentum Mill.) fruit. Plant Physiol 85:804–807

    Article  CAS  PubMed  Google Scholar 

  • Klepek Y-S, Geiger D, Stadler R, Klebl F, Landouar-Arsivaud L, Lemoine R, Hedrich R, Sauer N (2005) Arabidopsis POLYOL TRANSPORTER5, a new member of the monosaccharide transporter-like superfamily, mediates H+-symport of numerous substrates, including myo-inositol, glycerol and ribose. Plant Cell 17:204–218

    Article  CAS  PubMed  Google Scholar 

  • Knudson L (1917) The toxicity of galactose and mannose for green plants and the antagonistic action of other sugars toward these. Am J Bot 4:430–437

    Article  CAS  Google Scholar 

  • Koch KE (1996) Carbohydrate-modulated gene expression in plants. Ann Rev Plant Phys 47:509–540

    Article  CAS  Google Scholar 

  • Koch KE (2004) Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr Opin Plant Biol 7:235–246

    Article  CAS  PubMed  Google Scholar 

  • Kotake T, Hojo S, Yamaguchi D, Aohara T, Konishi T, Tsumuraya Y (2007) Properties and physiological function of UDP-sugar pyrophosphorylase in Arabidopsis. Biosci Biotech Bioch 71:761–771

    Article  CAS  Google Scholar 

  • Kotake T, Hojo S, Tajima N, Matsuoka K, Koyama T, Tsumuraya Y (2008) A bifunctional enzyme with L-fucokinase and GDP-L-fucose pyrophosphorylase activities salvages free L-fucose in Arabidopsis. J Biol Chem 283:8125–8135

    Article  CAS  PubMed  Google Scholar 

  • Krapp A, Quick WP, Stitt M (1991) Ribulose-1, 5-bisphosphate carboxylase-oxygenase, other Calvin-cycle enzymes, and chlorophyll decrease when glucose is supplied to mature spinach leaves via the transpiration stream. Planta 186:58–69

    Article  CAS  Google Scholar 

  • Loughman BC, Ratcliffe RG, Schwabe JWR (1989) Galactose metabolism in Zea mays root tissues observed by 31P-NMR spectroscopy. Plant Sci 59:11–23

    Article  CAS  Google Scholar 

  • Lu Y, Sharkey TD (2004) The role of amylomaltase in maltose metabolism in the cytosol of photosynthetic cells. Planta 218:466–473

    Article  CAS  PubMed  Google Scholar 

  • Masubelele NH, Dewitte W, Menges M, Maughan S, Collins C, Huntley R, Nieuwland J, Scofield S, Murray JAH (2005) D-type cyclins activate division in the root apex to promote seed germination in Arabidopsis thaliana. Proc Natl Acad Sci USA 102:15694–15699

    Article  CAS  PubMed  Google Scholar 

  • Minic Z (2008) Physiological roles of plant glycoside hydrolases. Planta 227:723–740

    Article  CAS  PubMed  Google Scholar 

  • Moore B, Zhou L, Rolland F, Hall Q, Cheng W–H, Liu Y-X, Hwang I, Jones T, Sheen J (2003) Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science 300:332–336

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plantarum 15:473–497

    Article  CAS  Google Scholar 

  • Neff MM, Chory J (1998) Genetic interactions between phytochrome A, phytochrome B and cryptochrome 1 during Arabidopsis development. Plant Physiol 118:27–35

    Article  CAS  PubMed  Google Scholar 

  • Pattathil S, Harper AD, Bar-Peled M (2005) Biosynthesis of UDP-xylose: characterization of membrane-bound AtUxs2. Planta 221:538–548

    Article  CAS  PubMed  Google Scholar 

  • Paul MJ, Pellny TK (2003) Carbon metabolite feedback regulation of leaf photosynthesis and development. J Exp Bot 54:539–547

    Article  CAS  PubMed  Google Scholar 

  • Pego JV, Smeekens SCM (2000) Plant fructokinases: a sweet family get together. Trends Plant Sci 5:531–536

    Article  CAS  PubMed  Google Scholar 

  • Pego JV, Weisbeek PJ, Smeekens SCM (1999) Mannose inhibits Arabidopsis germination via a hexokinase-mediated step. Plant Physiol 119:1017–1023

    Article  CAS  PubMed  Google Scholar 

  • Pego JV, Korstee AJ, Huijser C, Smeekens SCM (2000) Photosynthesis, sugars and the regulation of gene expression. J Exp Bot 51:407–416

    Article  CAS  PubMed  Google Scholar 

  • Porra RJ, Thompson WA, Kriedman PA (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta 975:384–394

    Article  CAS  Google Scholar 

  • Posner HB (1970) Inhibitory effect of carbohydrate on flowering in Lemna perpusilla. II. Reversal by glycine and 1-aspartate. Correlation with reduced levels of b-carotene and chlorophyll. Plant Physiol 45:687–690

    Article  CAS  PubMed  Google Scholar 

  • Priem B, Gross KC (1992) Mannosyl- and xylosyl-containing glycans promote tomato (Lycopersicon esculentum Mill.) fruit ripening. Plant Physiol 98:399–401

    Article  CAS  PubMed  Google Scholar 

  • Pritchard J, Tomos AD, Farrar JF, Minchin PEH, Gould N, Paul MJ, MacRae EA, Ferrieri RA, Gray DW, Thorpe MR (2004) Turgor, solute import and growth in maize roots treated with galactose. Funct Plant Biol 31:1095–1103

    Article  CAS  Google Scholar 

  • Ransom-Hodgkins WD, Vaughn MW, Bush DR (2004) Protein phosphorylation plays a key role in sucrose-mediated transcriptional regulation of a phloem-specific proton-sucrose symporter. Planta 217:483–489

    Article  Google Scholar 

  • Refrégier G, Pelletier S, Jaillard D, Höfte H (2004) Interaction between wall deposition and cell elongation in dark-grown hypocotyls cells in Arabidopsis. Plant Physiol 135:959–968

    Article  PubMed  Google Scholar 

  • Reinders A, Panshyshyn JA, Ward JM (2005) Analysis of transport activity of Arabidopsis sugar alcohol permease homolog AtPLT5. J Biol Chem 280:1594–1602

    Article  CAS  PubMed  Google Scholar 

  • Reiter W-D, Vanzin GF (2001) Molecular genetics of nucleotide sugar interconversion pathways. Plant Mol Biol 47:95–113

    Article  CAS  PubMed  Google Scholar 

  • Rhee SY, Zhang P, Foerster H, Tissier C (2005) AraCyc: Overview of an Arabidopsis metabolism database and its applications for plant research. In: Saito K, Dixon R, Willmitzer L (eds) Biotechnology in agriculture and forestry: plant metabolomics, vol 57. Springer, Amsterdam, pp 141–153

    Google Scholar 

  • Roldan M, Gomez-Mena C, Ruiz-Garcia L, Salinas J, Martinez-Zapater JM (1999) Sucrose availability on the aerial part of the plant promotes morphogenesis and flowering of Arabidopsis in the dark. Plant J 20:581–590

    Article  CAS  PubMed  Google Scholar 

  • Rolland F, Moore B, Sheen J (2002) Sugar sensing and signaling in plants. Plant Cell 14:S185–S205

    CAS  PubMed  Google Scholar 

  • Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Ann Rev Plant Biol 57:675–709

    Article  CAS  Google Scholar 

  • Rook F, Gerrits N, Kortstee A, van Kampen M, Borrias M, Weisbeek P, Smeekens S (1998) Sucrose-specific signalling represses translation of the Arabidopsis ATB2 bZIP transcription factor gene. Plant J 15:253–263

    Article  CAS  PubMed  Google Scholar 

  • Rösti J, Barton CJ, Albrecht S, Dupree P, Pauly M, Findlay K, Roberts K, Seifert GJ (2007) UDP-glucose 4-epimerase isoforms UGE2 and UGE4 cooperate in providing UDP-galactose for cell wall biosynthesis and growth of Arabidopsis thaliana. Plant Cell 19:1565–1579

    Article  PubMed  Google Scholar 

  • Sheu-Hwa CS, Lewis DH, Walker DA (1975) Stimulation of photosynthetic starch formation by sequestration of cytoplasmic orthophosphate. New Phytol 74:383–392

    Article  CAS  Google Scholar 

  • Shibuya N, Minami E (2001) Oligosaccharide signaling for defense responses in plants. Physiol Mol Plant Pathol 59:223–233

    Article  CAS  Google Scholar 

  • Sivitz AB, Reinders A, Ward JM (2008) Arabidopsis sucrose transporter AtSUC1 is important for pollen germination and sucrose-induced anthocyanin accumulation. Plant Physiol 147:92–100

    Article  CAS  PubMed  Google Scholar 

  • Solfanelli C, Poggi A, Loreti E, Alpi A, Perata P (2006) Sucrose-specific induction of the anthocyanin biosynthetic pathway in Arabidopsis. Plant Physiol 140:637–646

    Article  CAS  PubMed  Google Scholar 

  • Stitt M, Gibon Y, Lunn JE, Piques M (2007) Multilevel genomic analysis of carbon signaling during low carbon availability: coordinating the supply and utilization of carbon in a fluctuating environment. Funct Plant Biol 34:526–549

    Article  CAS  Google Scholar 

  • Teng S, Keurentjes J, Bentsink L, Koornneef M, Smeekens SCM (2005) Sucrose-specific induction of anthocyanin biosynthesis in Arabidopsis requires the MYB75/PAP1 gene. Plant Physiol 139:1840–1852

    Article  CAS  PubMed  Google Scholar 

  • To JPC, Reiter WD, Gibson SI (2003) Chloroplast biogenesis by Arabidopsis seedlings is impaired in the presence of exogenous glucose. Physiol Plantarum 118:456–463

    Article  CAS  Google Scholar 

  • Todd R, Tague BW (2001) Phosphomannose isomerase: a versatile selectable marker for Arabidopsis thaliana germline transformation. Plant Mol Biol Rep 19:307–319

    Article  CAS  Google Scholar 

  • Truernit E, Stadler R, Baier K, Sauer N (1999) A male gametophyte-specific monosaccharide transporter in Arabidopsis. Plant J 17:191–201

    Article  CAS  PubMed  Google Scholar 

  • Ullah H, Chen J-G, Wang S, Jones AM (2002) Role of heterotrimeric G protein in regulation of Arabidopsis seed germination. Plant Physiol 129:897–907

    Article  CAS  PubMed  Google Scholar 

  • Vandenbussche F, Verbelen J-P, Van Der Straeten D (2005) Of light and length: regulation of hypocotyl growth in Arabidopsis. BioEssays 27:275–284

    Article  CAS  PubMed  Google Scholar 

  • Vaughn MW, Harrington GN, Bush DR (2002) Sucrose-mediated transcriptional regulation of sucrose symporter activity in the phloem. Proc Natl Acad Sci USA 99:10876–10880

    Article  CAS  PubMed  Google Scholar 

  • Wang X-J, Hsiao K-C (1995) Sugar degradation during autoclaving: effects of duration and solution volume on breakdown of glucose. Physiol Plantarum 94:415–418

    Article  CAS  Google Scholar 

  • Watt G, Leoff C, Harper AD, Bar-Peled M (2004) A bifunctional 3, 5-epimerase/4-keto reductase for nucleotide rhamnose synthesis in Arabidopsis. Plant Physiol 134:1337–1346

    Article  CAS  PubMed  Google Scholar 

  • Wingler A, von Schaewen A, Leegood RC, Lea PJ, Quick WP (1998) Regulation of leaf senescence by cytokinin, sugars and light. Plant Physiol 116:329–335

    Article  CAS  Google Scholar 

  • Xiao W, Sheen J, Jang JC (2000) The role of hexokinase in plant sugar signal transduction and growth and development. Plant Mol Biol 44:451–461

    Article  CAS  PubMed  Google Scholar 

  • York WS, Darvill AG, Albersheim P (1984) Inhibition of 2, 4-dichlorophenoxyacetic acid-stimulated elongation of pea stem segments by a xyloglucan oligosaccharide. Plant Physiol 75:295–297

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Primavesi LE, Jhurreea D, Andralojc PJ, Mitchell RAC, Powers SJ, Schluepmann H, Delatte T, Wingler A, Paul MJ (2009) Inhibition of SNF1-related protein kinase1 activity and regulation of metabolic pathways by trehalose-6-phosphate. Plant Phys 149:1860–1871

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory N. Harrington.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stevenson, C.C., Harrington, G.N. The impact of supplemental carbon sources on Arabidopsis thaliana growth, chlorophyll content and anthocyanin accumulation. Plant Growth Regul 59, 255–271 (2009). https://doi.org/10.1007/s10725-009-9412-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-009-9412-x

Keywords

Navigation