Skip to main content
Log in

Molecular cloning and expression of an expansin-like gene in ‘Navel’ orange fruit during postharvest stresses

  • Original Paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

In a search for differentially expressed genes in peel pitting of ‘Navel’ orange fruit (Citrus sinensis L. Osbeck), a cDNA subtraction library was constructed and a sequence encoding expansin-like gene was isolated and identified as pitting related gene. Based on sequence information derived from this fragment, a full-length cDNA (CsEXP, GenBank accession no. FJ769424) of 1,083 nucleotides encoding expansin was isolated from ‘Navel’ orange by RACE approaches. CsEXP encoded a protein of 254 amino acid residues with an open reading frame located in the region between 52 and 816 bp. The calculated molecular weight of the mature protein was 27.05 kDa and theoretical isoelectric point was 7.93. The deduced protein contained conserved domains of expansin: the histidine-phenylalanine-aspartate motif in central portion, cysteine residues in N-terminus, and tryptophan residues in C-terminal region. The expression of CsEXP was higher in pitting than the control. Exposure of fruit to stresses, including wounding, anoxia, low temperature (4°C), and treatment with ethylene, increased CsEXP mRNA levels in comparison with the control untreated fruit, whereas high temperature (40°C) decreased its mRNA levels. Since low temperature, low oxygen and wounding were suspected factors inducing peel pitting of citrus fruit. The present results provided us a clue that CsEXP may play a role in response to peel pitting related stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

Bp:

Base pair

CsEXP :

Citrus expansin

EST:

Expressed sequence tags

HFD:

Histidine-phenylalanine-aspartate

ORF:

Open reading frame

UTS:

Untranslated sequence

References

  • Altschul SF, Madden TL, Schäffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. doi:10.1093/nar/25.17.3389

    Article  PubMed  CAS  Google Scholar 

  • Arpaia ML, Kahn TL, El-Otmani M (1991) Pre-harvest rindstain of ‘Valencia’ orange: histochemical and developmental characterization. Sci Hortic (Amsterdam) 46:261–274. doi:10.1016/0304-4238(91)90049-5

    Article  Google Scholar 

  • Belfield EJ, Ruperti B, Roverts JA et al (2005) Changes in expansin activity and gene expression during ethylene-promoted leaflet abscission in Sambucus nigra. J Exp Bot 56:817–823. doi:10.1093/jxb/eri076

    Article  PubMed  CAS  Google Scholar 

  • Catalá C, Rose JKC, Bennett AB (2000) Auxin-regulated genes encoding cell wall-modifying proteins are expressed during early tomato fruit growth. Plant Physiol 122:527–534. doi:10.1104/pp.122.2.527

    Article  PubMed  Google Scholar 

  • Chen F, Dahal P, Bradford KJ (2001) Two tomato expansin genes show divergent expression and localization in embryos during seed development and germination. Plant Physiol 127:928–936. doi:10.1104/pp.010259

    Article  PubMed  CAS  Google Scholar 

  • Cho HT, Kende H (1997) Expression of expansin genes is correlated with growth in deepwater rice. Plant Cell 9:1661–1671

    Article  PubMed  CAS  Google Scholar 

  • Civello PM, Powell ALT, Sabehat A et al (1999) An expansin gene expressed in ripening strawberry fruit. Plant Physiol 121:1273–1279. doi:10.1104/pp.121.4.1273

    Article  PubMed  CAS  Google Scholar 

  • Cosgrove DJ (2000) Loosening of plant cell walls by expansions. Nature 407:321–326. doi:10.1038/35030000

    Article  PubMed  CAS  Google Scholar 

  • Cosgrove DJ, Li LC, Cho HT et al (2002) The growing world of expansins. Plant Cell Physiol 43:1436–1444. doi:10.1093/pcp/pcf180

    Article  PubMed  CAS  Google Scholar 

  • Crowell DN, Kadlecek AT, Amasino RM (1990) Cytokinin-induced mRNAs in cultured soybean cells. Proc Natl Acad Sci USA 87:8815–8819. doi:10.1073/pnas.87.22.8815

    Article  PubMed  CAS  Google Scholar 

  • Freeman D (1976) Rind blemish of citrus I. Initiation and development. Sci Hortic (Amsterdam) 4:317–327. doi:10.1016/0304-4238(76)90099-6

    Article  Google Scholar 

  • Gao X, Li ZG, Fan J et al (2006) Screening and expression of differentially expressed genes for peel pitting of citrus fruit. Acta Hortic 712:473–479

    CAS  Google Scholar 

  • Harrison EP, McQueen-Mason SJ, Manning K (2001) Expression of six expansin genes in relation to extension activity in developing strawberry fruit. J Exp Bot 52:1437–1446. doi:10.1093/jexbot/52.360.1437

    Article  PubMed  CAS  Google Scholar 

  • Hayama H, Shimada T, Haji T et al (2000) Molecular cloning of a ripening-related expansin cDNA in peach: evidence for no relationship between expansin accumulation and change in fruit firmness during storage. J Plant Physiol 157:567–573

    CAS  Google Scholar 

  • Huang JR, Takano T, Akita S (2000) Expression of α-expansin genes in young seedlings of rice (Oryza sativa L.). Planta 211:467–473. doi:10.1007/s004250000311

    Article  PubMed  CAS  Google Scholar 

  • Kim JB, Kang JY, Kim SY (2004) Over-expression of a transcription factor regulating ABA-responsive gene expression confers multiple stress tolerance. Plant Biotechnol J 2:459–464. doi:10.1111/j.1467-7652.2004.00090.x

    Article  PubMed  CAS  Google Scholar 

  • Kita M, Hisada S, Endo-Inagaki T et al (2000) Changes in the levels of mRNAs for putative cell growth-related genes in the albedo and flavedo during citrus fruit development. Plant Cell Rep 19:582–587. doi:10.1007/s002990050777

    Article  CAS  Google Scholar 

  • Lafuente MT, Sala JM (2002) Abscisic acid and the influence of ethylene, humidity and temperature on the incidence of postharvest rindstaining of Navelina oranges (Citrus sinensis L. Osbeck) fruits. Postharvest Biol Technol 25:49–57. doi:10.1016/S0925-5214(01)00162-4

    Article  CAS  Google Scholar 

  • Lee Y, Kende H (2001) Expression of β-expansins correlated with internodal elongation in deepwater rice. Plant Physiol 127:645–654. doi:10.1104/pp.010345

    Article  PubMed  CAS  Google Scholar 

  • Lee Y, Kende H (2002) Expression of α-expansin and expansin-like genes in deepwater rice. Plant Physiol 130:1396–1405. doi:10.1104/pp.008888

    Article  PubMed  CAS  Google Scholar 

  • Lepedus H, Jozic M, Stolfa I (2005) Changes in peroxidase activity in the peel of Unshiu Mandarin (Citrus unshiu Marc.) fruit with different storage treatments. Food Technol Biotechnol 43:71–77

    CAS  Google Scholar 

  • Li ZG, Gao X, Fan J et al (2006) The relationship between activity and gene expression of phenylalanine ammonia-lyase and peel pitting in ‘Fengjie’ navel orange fruits. J. Plant Physiol Mol Biol 32:381–386

    CAS  Google Scholar 

  • Ookawara R, Satoh S, Yoshioka T et al (2005) Expression of α-expansin and xyloglucan endotransglucosylase/hydrolase genes associated with shoot elongation enhanced by anoxia, ethylene and carbon dioxide in arrowhead (Sagittaria pygmaea Miq.) tubers. Ann Bot (Lond) 96:693–702. doi:10.1093/aob/mci221

    Article  CAS  Google Scholar 

  • Petracek PD, Dou H, Pao S (1998) The influence of applied waxes on postharvest physiological behaviour and pitting of grapefruit. Postharvest Biol Technol 14:99–106. doi:10.1016/S0925-5214(98)00018-0

    Article  CAS  Google Scholar 

  • Reinhardt D, Wittwer F, Mandel T et al (1998) Localized upregulation of a new expansin gene predicts the site of leaf formation in the tomato meristem. Plant Cell 10:1427–1437

    Article  PubMed  CAS  Google Scholar 

  • Rose JKC, Bennett AB (1999) Cooperative disassembly of the cellulose-xyloglucan network of plant cell walls: parallels between cell expansion and fruit ripening. Trends Plant Sci 4:176–183. doi:10.1016/S1360-1385(99)01405-3

    Article  PubMed  Google Scholar 

  • Rose JKC, Lee HH, Bennett AB (1997) Expression of a divergent expansin gene is fruit-specific and ripening-regulated. Proc Natl Acad Sci USA 94:5955–5960. doi:10.1073/pnas.94.11.5955

    Article  PubMed  CAS  Google Scholar 

  • Sane VA, Chourasia A, Nath P (2005) Softening in mango (Mangifera indica cv. Dashehari) is correlated with the expression of an early ethylene responsive, ripening related expansin gene. Postharvest Biol Technol 38:223–230. doi:10.1016/j.postharvbio.2005.07.008

    Article  CAS  Google Scholar 

  • Shcherban TY, Shi J, Durachko DM et al (1995) Molecular cloning and sequence analysis of expansins-a highly conserved, multigene family of proteins that mediate cell wall extension in plant. Proc Natl Acad Sci USA 92:9245–9249. doi:10.1073/pnas.92.20.9245

    Article  PubMed  CAS  Google Scholar 

  • Vriezen WH, Graaf BD, Mariani C, Voesenek LA (2000) Submergence induces expansin gene expression in flooding-tolerant Rumex palustris and not in flooding-intolerant R. acetosa. Planta 210:956–963. doi:10.1007/s004250050703

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. John Yang critically reading this manuscript. This work was supported by grants (No. 30371006; No. 30471214) from National Nature science Foundation of China, and from the Committee of Science and Technology of China (No. 2006BAD22B01) and Chongqing (CSTC, 2007AA1018), Chinese-Greek Cooperative Program (2003-63).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-Guo Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, X., Li, ZG., Fan, J. et al. Molecular cloning and expression of an expansin-like gene in ‘Navel’ orange fruit during postharvest stresses. Plant Growth Regul 59, 13–19 (2009). https://doi.org/10.1007/s10725-009-9383-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-009-9383-y

Keywords

Navigation