Skip to main content
Log in

Promoting branching of a potential biofuel crop Jatropha curcas L. by foliar application of plant growth regulators

  • Original Paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript


Jatropha curcas L. (Euphorbiaceae) has the potential to become a key biofuel crop. Manual pruning (MP) is one of the major management practices in commercial plantations of this crop, resulting in production of more branches and thus increased potential for more inflorescences leading to a higher seed yield. However, this method is time-consuming, labour-intensive and expensive. This study was conducted to determine the potential of different plant growth regulators (PGRs) to increase the number of lateral branches of J. curcas. A single foliar application of N 6-benzyladenine (BA) at 12 mM significantly increased branches in both the pot (4.0) and field (13.2) trials compared to MP (1.8 and 5.7, respectively) and control (no new branches) plants. In the field, a single foliar application of 1.0 mM 2,3,5-triiodobenzoic acid (TIBA) resulted in a significant increment in the number of branches (15.9) after 7 months. Of all the PGRs examined, 2,3:4,6-di-O-isopropylidene-2-keto-l-gluconic acid (dikegulac; DK) at 2.0 mM produced the maximum number of branches (18.0) in the field 7 months after application. Concentrations of 2.0 and 3.0 mM of 1,2-dihydro-3,6-pyridazinedione (maleic hydrazide; MH) significantly increased the number of branches, 4 and 7 months after spraying in both the pot trial in the shade house and field, respectively. Under field conditions, J. curcas plants responded better to all the PGRs (DK < TIBA < BA < MH) when treated once, with insignificant variations in other growth parameters. This study indicates that a single foliar application of PGRs under field conditions can be an alternative method to MP for increasing the number of lateral branches of J. curcas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others



N 6-benzyladenine




Dikegulac (2,3:4,6-di-O-isopropylidene-2-keto-l-gulonic acid)


Maleic hydrazide (1,2-dihydro-3,6-pyridazinedione, coline salt)


Manual pruning


Plant growth regulator


2,3,5-triiodobenzoic acid


  • Achten WMJ, Verchot L, Franken YJ, Mathijs E, Singh VP, Aerts R, Muys B (2008) Jatropha bio-diesel production and use. Biomass Bioenergy 32:1063–1084. doi:10.1016/j.biombioe.2008.03.003

    Article  CAS  Google Scholar 

  • Al-Juboory K, Williams D (1991) Effects of two growth regulators on lateral branching and shoot growth of English ivy Hedera helix. Plant Growth Regul Soc Am Q 19:35–40

    CAS  Google Scholar 

  • Arzee T, Langenauer H, Gressel J (1977) Effects of dikegulac, a new growth regulator, on apical growth and development of three Compositae. Bot Gaz 138:18–28. doi:10.1086/336891

    Article  CAS  Google Scholar 

  • Augustus GDPS, Jayubalan M, Seiler GJ (2002) Evaluation and bioinduction of energy components of Jatropha curcas. Biomass Bioenergy 23:161–164. doi:10.1016/S0961-9534(02)00044-2

    Article  CAS  Google Scholar 

  • Azam MM, Waris A, Nahar NM (2005) Prospects and potential of fatty acid methyl esters of some non-traditional seed oils for use as biodiesel in India. Biomass Bioenergy 29:293–302. doi:10.1016/j.biombioe.2005.05.001

    Article  Google Scholar 

  • Bangerth F (1993) Polar auxin transport as a signal in the regulation of tree and fruit development. Acta Hortic 329:70–76

    Google Scholar 

  • Bangerth F, Li CJ, Gruber J (2000) Mutual interaction of auxin and cytokinins in regulating correlative dominance. Plant Growth Regul 32:205–217. doi:10.1023/A:1010742721004

    Article  CAS  Google Scholar 

  • Banko T, Stefani M (1996) Chemical growth control of Salvia farinacea ‘Victoria Blue’. Proc SNA Res Conf 41:214–215

    Google Scholar 

  • Boe A (1990) Effects of application of BA to seedlings of Pinus sylvatica and Pinus nigra. J Environ Hortic 8:212–214

    CAS  Google Scholar 

  • Bruner L, Keever G, Kessler R, Gilliam C (2000) Growth regulation effects of Lonicerax heckrotti (Goldflame Honeysuckle). Proc SNA Res Conf 45:263–264

    Google Scholar 

  • Chatfield SP, Stirnberg P, Frode BG, Lyeser O (2000) The hormonal regulation of auxillary bud growth in Arabidopsis. Plant J 24:159–169. doi:10.1046/j.1365-313x.2000.00862.x

    Article  PubMed  CAS  Google Scholar 

  • Cline M (1991) Apical dominance. Bot Rev 57:318–358. doi:10.1007/BF02858771

    Article  Google Scholar 

  • Emery RJN, Longnecker NE, Atkins CA (1998) Branch development in Lupinus angustifolius L. II. Relationship with endogenous ABA, IAA and cytokinins in auxiliary and main stem buds. J Exp Bot 49:555–562. doi:10.1093/jexbot/49.320.555

    Article  CAS  Google Scholar 

  • Everson C, Everson T (2006) Agroforestry systems for improved food production through the efficient use of water: Implementation of on-station trails. Deliverable submitted to the Water Research Commission—Project K5/148

  • Gianfagna T (1995) Natural and synthetic growth regulators and their use in horticultural and agronomic crops. In: Davies PJ (ed) Plant hormones: physiology, biochemistry and molecular biology. Kluwer Academic Publishers, Dordrecht, pp 751–773

    Google Scholar 

  • Gour VK (2006) Production practices including post-harvest management of J. curcas. In: Singh B, Swaminathan R, Ponraj V (eds) Biodiesel conference toward energy independence-focus of Jatropha, Hyderabad, India, June 9–10. Rashtrapati Bhawan, New Delhi, India, pp 223–251

    Google Scholar 

  • Gressel J (2008) Transgenics are imperative for biofuel crops. Plant Sci 174:246–263. doi:10.1016/j.plantsci.2007.11.009

    Article  CAS  Google Scholar 

  • Heller J (1996) Physic nut. Jatropha curcas L. 1. Promoting the conservation and use of underutilized and neglected crops. Institute of Plant Genetics and Crop Plants Research. Gatersleben/International Plant Genetic Resources Institute, Rome, Italy, pp 21–22

    Google Scholar 

  • Henny RJ (1986) BA induces lateral branching of Peperomia obtusifolia. J Am Soc Hortic Sci 20:115–116

    Google Scholar 

  • Hoffman I, Parups E (1964) Mode of action of maleic hydrazide in relation to residues in crops and soils. Residue Rev 7:96–113

    PubMed  CAS  Google Scholar 

  • Ito A, Hayama H, Yoshioka H (2000) Effect of maleic hydrazide on endogenous cytokinin contents in lateral buds, and its possible role in flower bud formation on the Japanese pear shoot. Sci Hortic (Amsterdam) 87:199–205. doi:10.1016/S0304-4238(00)00174-6

    Article  Google Scholar 

  • Kureel RS (2006) Prospects and potential of Jatropha curcas for biodiesel production. In: Singh B, Swaminathan R, Ponraj V (eds) Biodiesel conference toward energy independence-focus of Jatropha, Hyderabad, India, June 9–10. Rashtrapati Bhawan, New Delhi, India, pp 43–74

    Google Scholar 

  • Kwon E, Criley RA (1991) Cytokinin and ethephon induce greater branching of pruned Plumeria. Hortic Dig 93:6–8

    Google Scholar 

  • Lalouem M, Fox JE (1989) Cytokinin oxidase from wheat. Partial purification and general properties. Plant Physiol 90:899–906. doi:10.1104/pp.90.3.899

    Article  Google Scholar 

  • Lovat C (2006) Plant growth regulators for avocado production. Plant Growth Regul Soc Am Q 34:34–35

    Google Scholar 

  • Miguel LC, Longnecker NE, Ma Q, Osborne L, Atkins CA (1998) Branch development in Lupinus angustifolius L.I. Not all branch have the same potential growth rate. J Exp Bot 49:547–553. doi:10.1093/jexbot/49.320.547

    Article  CAS  Google Scholar 

  • Morey PR, Dahl BE (1975) Histological and morphological effects of auxin transport inhibitors on honey mesquite. Bot Gaz 136:274–280. doi:10.1086/336814

    Article  CAS  Google Scholar 

  • Naylor A, Davis E (1950) Maleic hydrazide as a plant growth inhibitor. Bot Gaz 112:112–113. doi:10.1086/335632

    Article  CAS  Google Scholar 

  • Ongaro V, Leyser O (2008) Hormonal control of shoot branching. J Exp Bot 59:67–74. doi:10.1093/jxb/erm134

    Article  PubMed  CAS  Google Scholar 

  • Richards D, Wilkinson RI (1984) Effect of manual pinching, potting-on and cytokinins on branching and flowering of Camellia, Rhododendron, and Rosa. Sci Hortic (Amsterdam) 23:75–83. doi:10.1016/0304-4238(84)90047-5

    Article  Google Scholar 

  • Sansberro PA, Mroginski CLA, Bottini RB (2006) Stimulation of lateral branch formation on Ilex paraguariensis (Aquifoliaceae) seedlings. Aust J Exp Agric 46:707–710. doi:10.1071/EA04178

    Article  Google Scholar 

  • Svenson S (1991) Rooting and lateral shoot elongation of Verbena following benzyl aminopurine application. J Am Soc Hortic Sci 26:391–392

    CAS  Google Scholar 

  • Wilson M, Nell T (1983) Foliar applications of BA increase branching of Welkeri dieffenbachia. J Am Soc Hortic Sci 18:447–448

    Google Scholar 

Download references


We thank Verus Farming Ltd, South Africa and the University of KwaZulu-Natal Pietermaritzburg for financial support. Professor Colin Everson generously made available the plants used in the field trials.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Johannes Van Staden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdelgadir, H.A., Johnson, S.D. & Van Staden, J. Promoting branching of a potential biofuel crop Jatropha curcas L. by foliar application of plant growth regulators. Plant Growth Regul 58, 287–295 (2009).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: