Advertisement

Plant Growth Regulation

, Volume 57, Issue 2, pp 173–184 | Cite as

Guanylyl cyclase activity during photoperiodic flower induction in Pharbitis nil

  • Adriana Szmidt-JaworskaEmail author
  • Krzysztof Jaworski
  • Agnieszka Zienkiewicz
  • Marta Lenartowska
  • Jan Kopcewicz
Original Paper

Abstract

It is known that the level of cGMP is modulated in plant cells in response to a number of stimuli but intracellular events dependent on cGMP metabolism are not clear. Guanylyl cyclases (GCs) are enzymes which are responsible for synthesis of cGMP in eukaryotic and prokaryotic cells. To collect evidence for the participation of cGMP in light signal transduction we isolated enzyme with guanylyl cyclase activity from Pharbitis nil and analysed its level and activity during photoperiodic flower induction. Soluble proteins were isolated from seedlings of a model short-day plant P. nil, partly purified and identified by in vivo and in vitro enzyme assay. In green plants enzyme activity amounted to 484 nmol cGMP/min/mg protein, whereas in etiolated plants it was three times lower (158 nmol cGMP/min/mg protein). Analyse cyclase consists of a single polypeptide of Mr 40 kDa. In order to determine if changes in guanylyl cyclase activity occurred in response to a long, inductive night, we measured enzyme activity in 4-h intervals and observed its increase at 4, 8 and 16 h of darkness. This pattern also fits well with changes in the endogenous cGMP level during a 16 h long flower inductive night. Immunocytochemical analysis confirmed these observations and revealed that changes in the GC level during light/dark conditions appeared. During 16 h long inductive night the strongest signal was observed in cotyledons after 4 and 16 h of the darkness. A high level of fluorescence was generally distributed in mesophyll, however, it was also observed in guard cells. Staining was apparently absent in the veins and cotyledon body. Furthermore, the location inside the cell was analysed. The protein was immunolocalized preferentially in the cytosol, chloroplasts and peroxysomes. Taken together, these data demonstrate in Pharbitis nil the presence of an enzyme which is able to convert GTP to cGMP. Because its level and activity are affected by light we believe that GC/cGMP play a substantial role in light/dark dependent process in plants, such as photoperiodic flower induction.

Keywords

cGMP Guanylyl cyclase Photoperiodic flower induction Pharbitis nil 

Notes

Acknowledgement

This work was supported by the Ministry of Science and Higher Education (Poland) Grant No. 0704/B/P01/2007/33.

References

  1. Arnold WP, Mittal CK, Katsuki S, Murad F (1977) Nitric oxide activates guanylate cyclase and increases guanosine 3′:5′-cyclic monophosphate levels in various tissue preparation. Proc Natl Acad Sci USA 74:3203–3207. doi: 10.1073/pnas.74.8.3203 PubMedCrossRefGoogle Scholar
  2. Barroso JB, Corpas FJ, Carreras A, Sandalio LM, Valderrama R, Palma JM et al (1999) Localization of nitric oxide in plant peroxisomes. J Biol Chem 274:36729–36733. doi: 10.1074/jbc.274.51.36729 PubMedCrossRefGoogle Scholar
  3. Bowler C, Neuhaus G, Yamagata H, Chua NH (1994) Cyclic GMP and calcium mediate phytochrome transduction. Cell 77:73–81. doi: 10.1016/0092-8674(94)90236-4 PubMedCrossRefGoogle Scholar
  4. Bradford MM (1976) A rapid and sensitive methods for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254. doi: 10.1016/0003-2697(76)90527-3 PubMedCrossRefGoogle Scholar
  5. Brown EG, Newton RP, Evans DE, Walton TJ, Younis LM, Vaughan JM (1989) Influence of light on cyclic nucleotide metabolism in plants: effect of dibutyryl cyclic nucleotides on chloroplast components. Phytochemistry 28:2559–2563. doi: 10.1016/S0031-9422(00)98040-3 CrossRefGoogle Scholar
  6. Cousson A (2003) Pharmacological evidence for a positive influence of the cyclic GMP-independent transduction on the cyclic GMP-mediated Ca2+-dependent pathway within Arabidopsis stomatal opening in response to auxin. Plant Sci 164:759–767. doi: 10.1016/S0168-9452(03)00062-1 CrossRefGoogle Scholar
  7. Cousson A, Vavasseur A (1998) Putative involvement of cytosolic Ca2+ and GTP-binding proteins in cyclic-GMP-mediated induction of stomatal opening by auxin in Commelina communis L. Planta 206:308–314. doi: 10.1007/s004250050405 CrossRefGoogle Scholar
  8. del Rio LA, Corpas FJ, Barrosi JB (2004) Nitric oxide and nitric oxide synthase activity in plants. Phytochemistry 65:783–792. doi: 10.1016/j.phytochem.2004.02.001 PubMedCrossRefGoogle Scholar
  9. Durner J, Wendehenne D, Klessig DF (1998) Defence gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. Proc Natl Acad Sci USA 95:10328–10333. doi: 10.1073/pnas.95.17.10328 PubMedCrossRefGoogle Scholar
  10. Dzeja C, Hagen V, Kaupp UB, Frings S (1999) Ca2+ permeation in cyclic nucleotide-gated channels. EMBO J 18:131–144. doi: 10.1093/emboj/18.1.131 PubMedCrossRefGoogle Scholar
  11. Hallett MA, Delaat JL, Arikawa K, Schlamp CL, Kong F, Williams DS (1996) Distribution of guanylate cyclase within photoreceptor outer segments. J Cell Sci 109:1803–1812PubMedGoogle Scholar
  12. Hasunuma K (1998) Molecular aspects of light signal transduction, circadian rhythm and flowering in plants. Recent Res Dev Photochem Photobiol 2:47–52Google Scholar
  13. Hasunuma K, Funadera K, Furukawa K, Miyamoto-Shinoyama (1988) Rhythmic oscillation of cyclic 3′,5′-guanosine monophosphate concentration and stimulation of flowering by cyclic GMP in Lemna paucicostata. Photochem Photobiol 48:89–92CrossRefGoogle Scholar
  14. Hu J, Aguirre M, Peto C, Alonso J, Ecker J, Chory J (2002) A role for peroxisomes in photomorphogenesis and development of Arabidopsis. Science 297:625–631. doi: 10.1126/science.1073633 CrossRefGoogle Scholar
  15. Ivanova K, Das PK, Van Den Wijngaard R, Lenz W, Klockenbring T, Malcharzyk V et al (2001) Differential expression of functional guanylyl cyclase in melanocytes: absence of nitric-oxide-sensitive isoform in metastatic cells. J Invest Dermatol 116:409–416. doi: 10.1046/j.1523-1747.2001.01255.x PubMedCrossRefGoogle Scholar
  16. Kamisaki Y, Saheki S, Nakane M, Palmieri J, Kuno T, Chang B et al (1986) Soluble guanylate cyclase from rat lung exists as a heterodimer. J Biol Chem 261:7236–7241PubMedGoogle Scholar
  17. Koesling D (1998) Modulators of soluble guanylyl cyclase. Naunyn Schmiedebergs Arch Pharmacol 358:123–126. doi: 10.1007/PL00005232 PubMedCrossRefGoogle Scholar
  18. Koesling D, Friebe A (1999) Soluble guanylyl cyclase: structure and regulation. Rev Physiol Biochem Pharmacol 135:41–65. doi: 10.1007/BFb0033669 PubMedCrossRefGoogle Scholar
  19. Koesling D, Böhme E, Schultz G (1991) Guanylyl cyclases, a growing family of signal-transducing enzymes. FASEB J 5:2785–2791PubMedGoogle Scholar
  20. Kwezi L, Meier S, Mungur L, Ruzvidzo O, Irving H, Gehring C (2007) The Arabidopsis thaliana brassinosteroid receptor (AtBRI1) contains a domain that functions as a guanylyl cyclase in vitro. PLoS One 2:e449. doi: 10.1371/journal.pone.0000449 PubMedCrossRefGoogle Scholar
  21. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. doi: 10.1038/227680a0 PubMedCrossRefGoogle Scholar
  22. Ludidi N, Gehring C (2003) Identification of a novel protein with guanylyl cyclase activity in Arabidopsis thaliana. J Biol Chem 278:6490–6494. doi: 10.1074/jbc.M210983200 PubMedCrossRefGoogle Scholar
  23. Maathuis FJM (2006) cGMP modulates gene transcription and cation transport in Arabidopsis roots. Plant J 45:700–711. doi: 10.1111/j.1365-313X.2005.02616.x PubMedCrossRefGoogle Scholar
  24. Macchia V, Caputo G, Mandato E, Rocino A, Adhya S, Pastan I (1981) Guanylate cyclase activity in Escherichia coli mutants defective in adenylate cyclase. J Bacteriol 147:931–934PubMedGoogle Scholar
  25. Murad F (1994) Cyclic GMP: synthesis, metabolism and function. In: Murad F (ed) Advances in pharmacology, vol 26. Academic Press, San DiegoGoogle Scholar
  26. Neill SJ, Desikan R, Clarke A, Hancock JT (2002) Nitric oxide is a novel component of abscisic acid signalling in stomatal guard cells. Plant Physiol 128:13–16. doi: 10.1104/pp.128.1.13 PubMedCrossRefGoogle Scholar
  27. Newton RF, Kingston EE, Evans DE, Younis LM, Brown EG (1984) Occurrence of guanosine 3′,5′-cyclic monophosphate (cyclic GMP) and associated enzyme systems in Phaseolus vulgaris L. Phytochemistry 23:1367–1372. doi: 10.1016/S0031-9422(00)80467-7 CrossRefGoogle Scholar
  28. Penson SP, Schuurink RC, Fath A, Gubler F, Jacobsen JV, Jones RL (1996) cGMP is required for giberellic acid-induced gene expression in barley aleurone. Plant Cell 8:2325–2333PubMedCrossRefGoogle Scholar
  29. Pfeiffer S, Janistyn B, Jessner G, Pichorner H, Eberman RE (1994) Gaseous nitric oxide stimulates guanosine 3′,5′-cyclic monophosphate formation in spruce needles. Phytochemistry 36:259–262. doi: 10.1016/S0031-9422(00)97057-2 CrossRefGoogle Scholar
  30. Pharmawati M, Gehring CA, Irving HR (1998) An immunoaffinity purified plant natriuretic peptide analogue modulates cGMP levels in the Zea mays root stele. Plant Sci 137:107–115. doi: 10.1016/S0168-9452(98)00135-6 CrossRefGoogle Scholar
  31. Pharmawati M, Maryani MM, Nikolakopoulos T, Gehring CA, Irving HR (2001) Cyclic GMP modulate stomatal opening induced by natriuretic peptides and immunoreactive analogues. Plant Physiol Biochem 39:385–394. doi: 10.1016/S0981-9428(01)01252-9 CrossRefGoogle Scholar
  32. Plieth C (2005) Calcium: just another regulator in the machinery of life? Ann Bot (Lond) 96:1–8. doi: 10.1093/aob/mci144 CrossRefGoogle Scholar
  33. Prado AM, Porterfield DM, Feijo JA (2004) Nitric oxide is involved in growth regulation and re-orientation od pollen tubes. Development 131:2707–2714. doi: 10.1242/dev.01153 PubMedCrossRefGoogle Scholar
  34. Reggiani R (1997) Alteration of levels of cyclic nucleotides in response to anaerobiosis in rice seedlings. Plant Cell Physiol 38:740–742Google Scholar
  35. Schaap P (2005) Guanylyl cyclases across the tree of life. Front Biosci 10:1485–1498. doi: 10.2741/1633 PubMedCrossRefGoogle Scholar
  36. Son JK, Rosazza JPN (2000) Cyclic guanosine-3′,5′-monophosphate and biopteridine biosynthesis in Nocardia sp. J Bacteriol 182:3644–3648. doi: 10.1128/JB.182.13.3644-3648.2000 PubMedCrossRefGoogle Scholar
  37. Stone JR, Marletta MA (1995) Heme stereochemistry of heterodimeric soluble guanylate cyclase. Biochemistry 34:14668–14674. doi: 10.1021/bi00045a007 PubMedCrossRefGoogle Scholar
  38. Szmidt-Jaworska A, Jaworski K, Tretyn A, Kopcewicz J (2004) The involvement of cyclic GMP in the photoperiodic flower induction of Pharbitis nil. J Plant Physiol 161:277–284. doi: 10.1078/0176-1617-01122 PubMedCrossRefGoogle Scholar
  39. Szmidt-Jaworska A, Jaworski K, Kopcewicz J (2006) The involvement of cyclic ADPR in photoperiodic flower induction of Pharbitis nil. J Plant Growth Regul 25:233–244. doi: 10.1007/s00344-006-0015-8 CrossRefGoogle Scholar
  40. Szmidt-Jaworska A, Jaworski K, Kopcewicz J (2008a) The involvement of cyclic GMP in phytochrome-controlled flowering of Pharbitis nil. J Plant Physiol 165:858–867. doi: 10.1016/j.jplph.2007.02.010 PubMedCrossRefGoogle Scholar
  41. Szmidt-Jaworska A, Jaworski K, Kopcewicz J (2008b) Effect of light on soluble guanylyl cyclase activity in Pharbitis nil seedlings. J Photochem Photobiol. doi: 10.1016/j.jphotobiol.2008.06.001 Google Scholar
  42. Volotovsky ID, Dubovskaya LV, Molchan OV (2003) Photoreceptor phytochrome regulates the cyclic guanosine 3′,5′-monophosphate synthesis in Avena sativa L. cells. Bulg J Plant Physiol 29:3–12Google Scholar
  43. Yamamoto T, Yao Y, Harumi T, Suzuki N (2003) Localization of the nitric oxide/cGMP signaling pathway-related genes and influences of morpholino knock-down of soluble guanylyl cyclase on medaka fish embryogenesis. Zool Sci 20:181–191. doi: 10.2108/zsj.20.181 PubMedCrossRefGoogle Scholar
  44. Yuan J, Liakat AM, Taylor J, Liu J, Sun G, Liu W et al (2008) A guanylyl cyclase-like gene is associated with giberella ear rot resistance in maize (Zea mays L.). Theor Appl Genet 116:465–479. doi: 10.1007/s00122-007-0683-1 PubMedCrossRefGoogle Scholar
  45. Zabel U, Kleinschnitz C, Oh P, Nedvetsky P, Smolenski A, Müller H et al (2002) Calcium-dependent membrane association sensitizes soluble guanylyl cyclase to nitric oxide. Nat Cell Biol 4:307–311. doi: 10.1038/ncb775 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Adriana Szmidt-Jaworska
    • 1
    Email author
  • Krzysztof Jaworski
    • 1
  • Agnieszka Zienkiewicz
    • 1
  • Marta Lenartowska
    • 2
  • Jan Kopcewicz
    • 1
  1. 1.Department of Physiology and Molecular Biology of PlantsNicolaus Copernicus UniversityTorunPoland
  2. 2.Laboratory of Developmental BiologyNicolaus Copernicus UniversityTorunPoland

Personalised recommendations