Skip to main content
Log in

Cyclic GMP stimulates flower induction of Pharbitis nil via its influence on cGMP regulated protein kinase

  • Original Paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

It was revealed that cGMP is involved in the control of photoperiodic flower induction. Further insight into the signalling function of cGMP is likely to be obtained by analysis of its effectors. Therefore, in the present study, we used various agents that cause changes in cGMP-dependent kinase (PKG) activity and examined their effects on the activity of kinase isolated from Pharbitis nil and flower induction. It was found that exogenous applications of PKG activators (cGMP, 8-pCPT-cGMP, 8-Br-cGMP, 8-pCPT-PET-cGMP) to cotyledons which were exposed to a 12-h-long subinductive night significantly increased flowering response. From among the many antagonists of cGMP-dependent protein kinase Rp-8-Br-PET-cGMPS, Rp-8-pCPT-cGMP and the synthetic heptapeptide inhibitor of PKG were used for our analysis. When Rp-8-Br-PET-cGMPS and Rp-8-pCPT-cGMP were applied during a 16-h-long inductive night, significant reduction in the number of flower buds was observed, whereas synthetic heptapeptide did not change the intensity of flowering. The influence of the analysed chemicals on protein kinase activity was also examined in vitro. With the exception of synthetic heptapeptide, which seems ineffective, the enzyme activity was stimulated by all agonists and significantly reduced by all antagonists. The activity of protein kinase was assayed in P. nil soluble protein fractions from plants grown under flower-inducing and non-inducing conditions. In vitro phosphorylation was slightly greater in the soluble fraction obtained from plants grown under the flower-inducing condition, reaching 1.05 nmol/min/mg protein, when compared to the control 0.81 nmol/min/mg protein. In relation to the results described above, we can conclude that cGMP as a mediator participating in photoperiodic flower induction may govern this process by the phosphorylation mechanism via its influence on cGMP-dependent protein kinase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Balagué C, Lin B, Alcon C, Flottes G, Malmström S, Köhler C et al (2003) HLMI, an essential signaling component in the hypersensitive response, is a member of the cyclic nucleotide-gated channel ion channel family. Plant Cell 15:365–379. doi:10.1105/tpc.006999

    Article  PubMed  CAS  Google Scholar 

  • Bowler C, Chua NH (1994) Emerging themes of plant signal transduction. Plant Cell 6:1529–1541

    Article  PubMed  CAS  Google Scholar 

  • Bowler C, Neuhaus G, Yamagata H, Chua NH (1994) Cyclic GMP and calcium mediate phytochrome transduction. Cell 77:73–81. doi:10.1016/0092-8674(94)90236-4

    Article  PubMed  CAS  Google Scholar 

  • Butt E, Pöhler D, Genieser H-G, Huggins JP, Bucher B (1994) Inhibition of cyclic GMP-dependent protein kinase-mediated effects by (Rp)-8-bromo-PET-cyclic GMPS. Br J Pharmacol 116:3110–3116

    Google Scholar 

  • Clough SJ, Fengler KA, Yu IC, Lippok B, Smith RK, Bent AF (2000) The Arabidopsis dnd1 defense, no death gene encodes a mutated cyclic nucleotide-gated ion channel. Proc Natl Acad Sci USA 97:9323–9328. doi:10.1073/pnas.150005697

    Article  PubMed  CAS  Google Scholar 

  • Cousson A, Vavasseur A (1998) Putative involvement of Ca2+ and GTP-binding proteins in cyclic-GMP-mediated induction of stomatal opening by auxin in Commelina communis L. Planta 206:308–314. doi:10.1007/s004250050405

    Article  CAS  Google Scholar 

  • Dubovskaya LV, Volotovsky ID (2004) Affinity chromatography isolation and characterization of soluble cGMP-binding proteins from Avena sativa seedlings. Bulg J Plant Physiol 30:14–24

    CAS  Google Scholar 

  • Dubovskaya LV, Molchan OV, Volotovsky ID (2002) Cyclic GMP-binding activity in Avena sativa seedlings. Russ J Plant Physiol 2:216–220. doi:10.1023/A:1014801623322

    Article  Google Scholar 

  • Friebe A, Koesling D (2003) Regulation of nitric oxide-sensitive guanylyl cyclase. Circ Res 93:96–105. doi:10.1161/01.RES.0000082524.34487.31

    Article  PubMed  CAS  Google Scholar 

  • Friedrich P, Curvetto N, Giusto N (1999) Cyclic AMP-dependent protein phosphorylation in guard cell protoplasts of Vicia faba L. Biocell 23:203–210

    CAS  Google Scholar 

  • Garcia-Mata C, Gay R, Sokolovsky S, Hills A, Lamattina L, Blatt MR (2003) Nitric oxide regulates K+ and Cl channels in guard cells through a subset of abscisic acid-evoked signaling pathways. Proc Natl Acad Sci USA 19:11116–11121. doi:10.1073/pnas.1434381100

    Article  CAS  Google Scholar 

  • Hammond RW, Zhao Y (2000) Characterisation of a tomato protein kinase gene induced by infection by potato spindle tuber viroid. Mol Plant Microbe Interact 13:903–910. doi:10.1094/MPMI.2000.13.9.903

    Article  PubMed  CAS  Google Scholar 

  • Hasunuma K, Funadera K, Furukawa K, Miyamoto-Shinoyama (1988) Rhythmic oscillation of cyclic 3′, 5′-guanosine monophosphate concentration and stimulation of flowering by cyclic GMP in Lemna paucicostata. Photochem Photobiol 48:89–92

    Article  CAS  Google Scholar 

  • Hasunuma K, Ogura Y, Yabe N (1998) Early events occurring during light signal transduction in plant and fungi. J Photosci 5:73–81

    CAS  Google Scholar 

  • Hofmann F (2005) The biology of cyclic nucleotide-dependent protein kinases. J Biol Chem 280:1–4

    PubMed  CAS  Google Scholar 

  • Hood J, Granger HJ (1998) Protein kinase G mediates vascular endothelia growth factor-induced Raf-1 activation and proliferation in human endothelial cells. J Biol Chem 273:23504–23508. doi:10.1074/jbc.273.36.23504

    Article  PubMed  CAS  Google Scholar 

  • Hu X, Neill SJ, Tang Z, Cai W (2005) Nitric oxide mediates gravitropic bending in soybean roots. Plant Physiol 137:663–670. doi:10.1104/pp.104.054494

    Article  PubMed  CAS  Google Scholar 

  • Jaworski K, Szmidt-Jaworska A, Tretyn A, Kopcewicz J (2003) Biochemical evidence for calcium-dependent protein kinase from Pharbitis nil and its involvement in photoperiodic flower induction. Phytochemistry 62:1047–1055. doi:10.1016/S0031-9422(02)00677-5

    Article  PubMed  CAS  Google Scholar 

  • Jaworski K, Szmidt-Jaworska A, Tretyn A, Kopcewicz J (2004) Calmodulin from Pharbitis nil: purification and characterization. Biol Plant 48:55–60. doi:10.1023/B:BIOP.0000024275.66196.d9

    Article  CAS  Google Scholar 

  • Kato R, Uno I, Ishikawa T, Fujii T (1993) Effect of cAMP on the activity of soluble protein kinases in Lemna paucicostata. Plant Cell Physiol 24:841–848

    Google Scholar 

  • Knight H, Knight MR (2001) Abiotic stress signaling pathways: specificity and cross-talk. Trends Plant Sci 6:262–267. doi:10.1016/S1360-1385(01)01946-X

    Article  PubMed  CAS  Google Scholar 

  • Komatsu S, Hirano H (1993) Protein kinase activity and protein phosphorylation in rice (Oryza sativa L.) leaf. Plant Sci 94:127–137. doi:10.1016/0168-9452(93)90014-Q

    Article  CAS  Google Scholar 

  • Liu J-Q, Leggewie G, Varotto S (1999) Characterisation of an anther-expressed protein kinase gene in the potato Solanum berthaultii and its antisense inhibition in transgenic plants. Sex Plant Reprod 11:336–346. doi:10.1007/s004970050161

    Article  CAS  Google Scholar 

  • Liu P, Meng L-J, Zhang H-X, Chen J, Wang X-C (2002) Involvement of cAMP in ABA signal transduction in tobacco suspension cells. Acta Bot Sin 44:1432–1437

    CAS  Google Scholar 

  • Maathuis FJ (2006) cGMP modulates gene transcription and cation transport in Arabidopsis roots. Plant J 45:700–711. doi:10.1111/j.1365-313X.2005.02616.x

    Article  PubMed  CAS  Google Scholar 

  • Maathuis FJ, Sanders D (2001) Sodium uptake in Arabidopsis root is regulated by cyclic nucleotides. Plant Physiol 127:1617–1625. doi:10.1104/pp.127.4.1617

    Article  PubMed  CAS  Google Scholar 

  • Murad F (1994) Cyclic GMP: synthesis, metabolism and function. In: Murad F (ed) Advances in pharmacology, vol 26. Academic Press Inc, San Diego, California

    Google Scholar 

  • Navazio L, Mariani P, Sanders D (2001) Mobilization of Ca2+ by cyclic ADP-ribose from the endoplasmic reticulum of cauliflower florets. Plant Physiol 125:2129–2138. doi:10.1104/pp.125.4.2129

    Article  PubMed  CAS  Google Scholar 

  • Neill SJ, Desikan R, Hancock JT (2003) Nitric oxide signaling in plants. New Phytol 159:11–35. doi:10.1046/j.1469-8137.2003.00804.x

    Article  CAS  Google Scholar 

  • Newton RP, Smith CJ (2004) Cyclic nucleotides. Phytochemistry 65:2423–2437. doi:10.1016/j.phytochem.2004.07.026

    Article  PubMed  CAS  Google Scholar 

  • Penson SP, Schuurink RC, Fath A, Gubler F, Jacobsen JV, Jones RL (1996) cGMP is required for gibberellic acid-induced gene expression in barley aleurone. Plant Cell 8:2325–2333

    Article  PubMed  CAS  Google Scholar 

  • Prado AM, Porterfield DM, Feijo JA (2004) Nitric oxide is involved in growth regulation and re-orientation of pollen tubes. Development 131:2707–2714. doi:10.1242/dev.01153

    Article  PubMed  CAS  Google Scholar 

  • Rabkin SW, Klassen SS, Tsang MY (2007) Sodium nitroprusside activates p38 mitogen activated protein kinase through a cGMP/PKG independent mechanism. Life Sci 81:640–646. doi:10.1016/j.lfs.2007.06.022

    Article  PubMed  CAS  Google Scholar 

  • Schaap P (2005) Guanylyl cyclases across the tree of life. Front Biosci 10:1485–1498. doi:10.2741/1633

    Article  PubMed  CAS  Google Scholar 

  • Schuurink RC, Shartzer SF, Fath A, Jones RL (1998) Characterization of calmodulin-binding transporter from the plasma membrane of barley aleurone. Proc Natl Acad Sci USA 95:1944–1949. doi:10.1073/pnas.95.4.1944

    Article  PubMed  CAS  Google Scholar 

  • Schwede F, Maronde E, Genieser H-G, Jastorff B (2000) Cyclic nucleotide analogs as biochemical tools and prospective drugs. Pharmacol Ther 87:199–226. doi:10.1016/S0163-7258(00)00051-6

    Article  PubMed  CAS  Google Scholar 

  • Sharma VK, Jain PK, Maheshwari SC, Khurana JP (1999) Changes in phosphorylation status of wheat plastid polypeptide are influenced by light, calcium and cAMP. J Plant Biochem Biotechnol 8:87–92

    CAS  Google Scholar 

  • Stern JH, Kaupp UB, MacLeish PR (1986) Control of the light-regulated current in rod photoreceptors by cyclic GMP, calcium and l-cis-diltiazem. Proc Natl Acad Sci USA 83:1163–1167. doi:10.1073/pnas.83.4.1163

    Article  PubMed  CAS  Google Scholar 

  • Szmidt-Jaworska A, Jaworski K, Tretyn A, Kopcewicz J (2003) Biochemical evidence for a cGMP-regulated protein kinase in Pharbitis nil. Photochemistry 63:635–642. doi:10.1016/S0031-9422(03)00247-4

    Article  CAS  Google Scholar 

  • Szmidt-Jaworska A, Jaworski K, Tretyn A, Kopcewicz J (2004) The involvement of cyclic GMP in photoperiodic flower induction of Pharbitis nil. J Plant Physiol 161:277–284. doi:10.1078/0176-1617-01122

    Article  PubMed  CAS  Google Scholar 

  • Szmidt-Jaworska A, Jaworski K, Kopcewicz J (2006) The involvement of cyclic ADPR in photoperiodic flower induction of Pharbitis nil. J Plant Growth Regul 25:233–244. doi:10.1007/s00344-006-0015-8

    Article  CAS  Google Scholar 

  • Szmidt-Jaworska A, Jaworski K, Kopcewicz J (2008) The involvement of cyclic GMP in phytochrome-controlled flowering of Pharbitis nil. J Plant Physiol 165:858–867. doi:10.1016/j.jplph.2007.02.010

    Article  PubMed  CAS  Google Scholar 

  • Talke IN, Blaudez D, Maathuis FJ, Sanders D (2003) CNGCs: prime targets of plant cyclic nucleotide signalling? Trends Plant Sci 8:286–293. doi:10.1016/S1360-1385(03)00099-2

    Article  PubMed  CAS  Google Scholar 

  • Thomas B (2006) Light signals and flowering. J Exp Bot 13:3387–3393. doi:10.1093/jxb/erl071

    Article  CAS  Google Scholar 

  • Thomas B, Vince-Prue D (1996) Photoperiodism in plants. Academic Press, London

    Google Scholar 

  • Tretyn A, Czaplewska J, Cymerski M, Kopcewicz J, Kendrick RE (1994) The mechanism of calcium action on flower induction in Pharbitis nil. J Plant Physiol 144:562–568

    CAS  Google Scholar 

  • Tretyn A, Łukaszewska H, Kopcewicz J, Oleńczuk A, Nowakowska A (1997) The role of cotyledons in photoperiodic flower induction of Pharbitis nil. In: Greppin H, Penel C, Simon P (eds) Traveling Shot on Plant Development. Uni Geneva Press, Geneva, pp 51–62

    Google Scholar 

  • Vallad G, Rivkin M, Vallejos C, McClean P (2001) Cloning and homology modelling of a Pto-like protein kinase family of common bean (Phaseolus vulgaris L). Theor Appl Genet 103:1046–1058. doi:10.1007/s001220100705

    Article  CAS  Google Scholar 

  • Vince-Prue D (1994) The duration of light and photoperiodic responses. In: Kendrick RE, Kronenberg GHM (eds) Photomorphogenesis in plants. Kluwer Acad. Publ, Dordrecht

    Google Scholar 

  • Vince-Prue D, Gressel J (1985) Pharbitis nil. In: Halevy AH (ed) Handbook of flowering, vol IV. CRS Press Inc, Boca Raton, Florida, pp 47–81

    Google Scholar 

  • Yuan Q, Ouyang S, Liu J, Suh B, Cheung F, Sultana R et al (2003) The TIGR rice genome annotation resource: annotating the rice genome and creating resource for plant biologists. Nucleic Acids Res 31:229–233. doi:10.1093/nar/gkg059

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Guo YQ, Fujita K, Sakai K (2004) Involvement of cAMP signalling in elicitor-induced phytoalexin accumulation in Cupressus lusitanica cell cultures. New Phytol 161:723–733. doi:10.1111/j.1469-8137.2004.00976.x

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana Szmidt-Jaworska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szmidt-Jaworska, A., Jaworski, K. & Kopcewicz, J. Cyclic GMP stimulates flower induction of Pharbitis nil via its influence on cGMP regulated protein kinase. Plant Growth Regul 57, 115–126 (2009). https://doi.org/10.1007/s10725-008-9326-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-008-9326-z

Keywords

Navigation