Skip to main content
Log in

Cadmium-induced oxidative damage and antioxidative defense mechanisms in Vigna mungo L.

  • Original Paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Cadmium (Cd)-induced oxidative stress and antioxidant defense mechanisms were analyzed in roots and leaves of Vigna mungo L. Seeds were germinated in perlite-vermiculite and irrigated with Hoagland nutrient solution. At day 6, seedlings were exposed to 40 μM Cd under semi-hydroponic conditions for a period of 12 days. Growth anomalies and abnormal chromatin condensation were observed in Cd-treated plants, in comparison with control ones. Cd accumulation was observed in roots of treated plants. The analyses of antioxidative defense and oxidative parameters in roots, stems and leaves showed different tissue-specific responses. Superoxide dismutase (SOD) and guaiacol peroxidase (GPx) activities and the level of lipid peroxidation (MDA content) decreased in roots. However, they increased in leaves. Catalase activity and chlorophyll content, on the other hand, decreased over exposure to Cd stress. Total glutathione, non-protein thiols, reduced glutathione (GSH) and phytochelatins increased significantly, while oxidized glutathione (GSSG) decreased, as compared with control plants. The present data suggest that the presence of Cd in soil and water can cause oxidative damage that may be detrimental for optimum production of nutritional mung.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CAT:

Catalase

Cd:

Cadmium

DTNB:

5,5′-Dithiobis(2-nitrobenzoic acid)

GPx:

Guaiacol peroxidase

GSH:

Reduced glutathione

GSSG:

Oxidized glutathione

H2O2 :

Hydrogen peroxide

MDA:

Malondialdehyde

NBT:

Nitroblue tetrazolium

NPT:

Non-protein thiols

PCs:

Phytochelatins

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

TBA:

2-Thiobarbituric acid

TG:

Total glutathione

References

  • Anderson M (1985) Determination of glutathione and glutathione disulfide in biological samples. Method Enzymol 113:545–548

    Google Scholar 

  • Beyer WF, Fridovich Y (1987) Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal Biochem 161:559–566

    Article  PubMed  CAS  Google Scholar 

  • Briat J-F, Lebrun M (1999) Plant responses to metal toxicity. Plant Biol Pathol 322:43–54

    CAS  Google Scholar 

  • Cataldo DA, Garland TR, Wildung RE (1983) Cadmium uptake kinetics in intact soybean plants. Plant Physiol 73:844–848

    PubMed  CAS  Google Scholar 

  • Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59:527–605

    PubMed  CAS  Google Scholar 

  • Chaoui A, Mazhoudi S, Ghorbal MH, El Ferjani E (1997) Cadmium and Zinc induction on lipid peroxidation and effects on antioxidant enzymes activities in bean (Phaseolus vulgaris L.). Plant Sci 127:139–147

    Article  CAS  Google Scholar 

  • Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212:475–486

    Article  PubMed  CAS  Google Scholar 

  • Czuba M, Kraszewski A (1994) Long-term cadmium accelerates oxidant injury: significant of bound/free water status during long-term metal stress. Ecotoxicol Environ Saf 29:330–48

    Article  PubMed  CAS  Google Scholar 

  • D’Ambrogio de Argüeso A (1986) Manual de técnicas en histología vegetal. Buenos Aires. Editorial Hemisferio Sur, S.A

  • Das P, Samantaray S, Rout GR (1997) Studies on cadmium toxicity in plants: a review. Environ Pollut 98:29–36

    Article  PubMed  CAS  Google Scholar 

  • Dixit V, Pandey V, Shyam R (2001) Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv. Azad). J Exp Bot 52:1101–1109

    Article  PubMed  CAS  Google Scholar 

  • Duke J, Polhill R (1981) Seedlings of Leguminosae. In: Polhill RM, Raven P (eds) Advances in legume systematics. Royal Botanical Gardens Kew, London, pp 941–949

    Google Scholar 

  • Fery FL (2002) New opportunities in Vigna. In: Janick J, Whipkey A (eds) Trends in new crops and new uses. ASHS Press, Alexandria, pp 424–428

    Google Scholar 

  • Gallego S, Benavides M, Tomaro M (1996) Oxidative damage caused by cadmium chloride in sunflower (Helianthus annuus L) plants. Phyton (Buenos Aires) 58:41–52

    CAS  Google Scholar 

  • Gallego S, Benavides M, Tomaro M (1999) Effect of cadmium ions on antioxidant defense system in sunflower cotyledons. Biol Plant 42:49–55

    Article  CAS  Google Scholar 

  • Gichner T, Patkova Z, Szakova J, Demnerova K (2004) Cadmium induces DNA damage in tobacco roots, but no DNA damage, somatic mutations or homologous recombination in tobacco leaves. Mutat Res 559:49–57

    PubMed  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts I: Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 25:189–198

    Article  Google Scholar 

  • Heiss S, Wachtre A, Bogs J, Cobbet C, Rausch T (2003) Phytochelatin synthase (PCS) protein is induced in Brassica juncea leaves after prolonged Cd exposure. J Exp Bot 54:1833–1839

    Article  PubMed  CAS  Google Scholar 

  • Iannelli MA, Pietrini F, Fiore L, Petrilli L, Massacci A (2002) Antioxidant response to cadmium in Phragmites australis plants. Plant Physiol Biochem 40:977–982

    Article  CAS  Google Scholar 

  • Kahle H (1993) Response of roots of trees to heavy metals. Environ Exp Bot 33:99–119

    Article  Google Scholar 

  • Levine R, Garland D, Stadtman E (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478

    Article  PubMed  CAS  Google Scholar 

  • Lowry HO, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • May MJ, Vernoux T, Leaver C, Van Montagu M, Inzé D (1998) Glutathione homeostasis in plants: implications for environmental sensing and plant development. J Exp Bot 49:649–667

    Article  CAS  Google Scholar 

  • Padmaja K, Prasad DD, Prasad AR (1990) Selenium as a novel regulator of porphyrin biosynthesis in germinating seedlings of mung bean (Phaseolus vulgaris). Biochem Int 22:441–446

    PubMed  CAS  Google Scholar 

  • Pereyra GJ, Molina SMG, Lea PJ, Azevedo RA (2002) Activity of antioxidant enzymes in response to cadmium in Crotalaria juncea. Plant Soil 239:123–132

    Article  Google Scholar 

  • Pietrini F, Iannelli MA, Pasqualini S, Massacci A (2003) Interaction of cadmium with glutathione and photosynthesis in developing leaves and chloroplasts of Phragmites australis (Cav.) Trin. Ex. Steudel. Plant Physiol 133:829–837

    Article  PubMed  CAS  Google Scholar 

  • Raskin I, Kumar N, Dushenkov V (1994) Phytoremediation of metals. US Patent 5364-451

  • Roosens N, Verbruggen N, Meerts P, Ximenez-Embun P, Smith JAC (2003) Natural variation in cadmium tolerance and its relationship to metal hyperaccumulation for seven populations of Thlaspi caerulescens from western Europe. Plant Cell Environ 26:1657–1672

    Article  CAS  Google Scholar 

  • Sandalio LM, Dalurzo HC, Gomez M, Romero-Puertas MC, del Río LA (2001) Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J Exp Bot 52:2115–2126

    PubMed  CAS  Google Scholar 

  • Sanitá de Toppi L, Gabrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105–130

    Article  Google Scholar 

  • Schat H, Kalff M (1992) Are phytochelatins involved in differential heavy metal tolerance or do they merely reflect metal-imposed strain? Plant Physiol 99:1475–1480

    PubMed  CAS  Google Scholar 

  • Schupp R, Rennenberg H (1988) Diurnal changes in the glutathione content of spruce needles (Picea abies L.). Plant Sci 57:113–117

    Article  CAS  Google Scholar 

  • Schützendübel A, Polle A (2001) Cadmium-induced changes in antioxidative systems, hydrogen peroxide content and differentiation in Scots pine roots. Plant Physiol 127:887–898

    Article  PubMed  Google Scholar 

  • Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    Article  PubMed  Google Scholar 

  • Shaw BP (1995) Effects of mercury and cadmium on the activities of antioxidative enzymes in the seedlings of Phaseolus aureus. Biol Plant 37:587–596

    Article  CAS  Google Scholar 

  • Singh SS, Khan NA, Rahat N, Anjum NA (2008) Photosynthetic traits and activities of antioxidant enzymes in Blackgram (Vigna mungo L. Hepper) under cadmium stress. Am J Plant Physiol 3:25–32

    Article  CAS  Google Scholar 

  • Smeets K, Cuypers A, Lambrechts A, Semane B, Hoet P, Van Laere A, Vangronsveld J (2005) Induction of oxidative stress and antioxidative mechanisms in Phaseolus vulgaris after Cd application. Plant Physiol Biochem 43:437–444

    Article  PubMed  CAS  Google Scholar 

  • Snow R (1963) Alcoholic hydrochloride acid-carmine as stain for chromosomes in squash preparations. Stain Technol 38:9–13

    PubMed  CAS  Google Scholar 

  • Sorahan T, Lancashire RJ (1997) Lung cancer mortality in a cohort of workers employed at a cadmium recovery plant in the United States: an analysis with detailed job histories. Occup Environ Med 54:194–201

    PubMed  CAS  Google Scholar 

  • Valverde M, Trejo C, Rojas E (2001) Is the capacity of lead acetate and cadmium chloride to induce genotoxic damage due to direct DNA-metal interaction? Mutagenesis 16:265–270

    Article  PubMed  CAS  Google Scholar 

  • Wagner GJ (1993) Accumulation of Cd in crop plants and its consequences to human health. Adv Agron 51:173–212

    Article  CAS  Google Scholar 

  • Wintermans JF, De Mots A (1965) Spectrophotometric characteristics of chlorophylls a and b and their pheophytins in ethanol. Biochem Biophys Acta 109:448–453

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto H, Tani T (1996) Possible involvement of lipoxygenase in the mechanism of resistance of oats to Puccinia coronata avenae. J Phytopathol 116:329–337

    Article  Google Scholar 

  • Zenk MH (1996) Heavy metal detoxification in higher plants—a review. Gene 179:21–30

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Authors are grateful to Lic. Alejandra Canggiano, Mrs. Isabel Sosa, Mr. Rosario Dominguez and Arch. Alberto Daniel Hodara for their technical assistance. We thank Lic. Cristina Devia and Isabel Gimenez for their statistical assistance and Vida L. Hodara PhD, from Southwest Foundation Biomedical Research P.O. Box 760549, San Antonio Texas, for her invaluable assistance in reviewing the manuscript. This work was supported by a CONICET grant (PIP 4931), a SECyT Agency Grant (PICT 6-33874) IMIBIO-CONICET, and by a grant from Universidad Nacional de San Luis, (Proyecto 8104), Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fanny Zirulnik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Molina, A.S., Nievas, C., Chaca, M.V.P. et al. Cadmium-induced oxidative damage and antioxidative defense mechanisms in Vigna mungo L.. Plant Growth Regul 56, 285–295 (2008). https://doi.org/10.1007/s10725-008-9308-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-008-9308-1

Keywords

Navigation