Abeles FB, Morgan PW, Saltveit ME (eds) (1992) Ethylene in plants biology. Academic Press, San Diego
Google Scholar
Alderton WK, Cooper CE, Knowles RG (2001) Nitric oxide synthases: structure, function and inhibition. Biochem J 357:593–615
PubMed
CAS
Article
Google Scholar
Amir J, Preiss J (1982) Kinetic characterization of spinach leaf sucrose-phosphate synthase. Plant Physiol 69:1027–1030
PubMed
CAS
Article
Google Scholar
Andersen L, Williams MH, Serek M (2004) Reduced water availability improves drought tolerance of potted miniature roses: is the ethylene pathway involved. J Hort Sci Biotech 79:1–13
CAS
Google Scholar
Asada K, Takahashi M (1987) Production and scavenging of active oxygen in photosynthesis. In: Kyle DJ et al (eds) Photoinhibition (Topics in photosynthesis). Elsevier, pp 227–287
Avisar I, Pesis E (1991) The control of postharvest decay in table grapes using acetaldehyde vapour. Ann Appl Biol 118:229–237
Article
Google Scholar
Azama K, Abe S, Sugimoto H, Davies E (2003) Lysine containing proteins in maize endosperm: a major contribution from cytoskeleton-associated carbohydrate metabolism enzyme. Planta 217:628–638
PubMed
CAS
Article
Google Scholar
Babitha MP, Prakash HS, Shetty HS (2004) Purification and properties of lipoxygenase induced in downy mildew resistant pearl millet seedling due to infection with Sclerospora graminicola. Plant Sci 166:31–39
CAS
Article
Google Scholar
Beligni MV, Fath A, Bethke PC, Lamattina L, Jones R (2002) Nitric oxide act as an antioxidant and delays programmed cell death in barley aleurone cells. Plant Physiol 129:1642–1650
PubMed
CAS
Article
Google Scholar
Ben-Nissan G, Weiss D (1996) The petunia homologue of tomato gast1: transcript accumulation coincides with gibberellin-induced corolla cell elongation. Plant Mol Biol 32:1067–1074
PubMed
CAS
Article
Google Scholar
Bethke PC, Badger HR, Jones RL (2004) Apoplastic synthesis of nitric oxide by plant tissues. Plant Cell 16:332–341
PubMed
CAS
Article
Google Scholar
Bhownik PK, Matsuit T, Kawada K, Suzuki H (2001) Seasonal changes of asparagus spears in relation to enzyme activities and carbohydrate content. Scientia Hort 88:1–9
Article
Google Scholar
Biale JB, Young RE, Appleman WE (1957) Metabolic processes in cytoplasmic particles of the avocado fruit. I. Preparation procedures, co-factor requirements and oxidative phosphorylation. Physiol Plant 10:48–63
CAS
Article
Google Scholar
Bieleski R (1993) Fructan hydrolysis during petal expansion in the ephemeral daylily flower. Plant Physiol 109:557–565
Google Scholar
Biran I, Halvey AH (1974) Effect of varying light intensity and temperature applied to whole plants, or locally to leaves or flower buds, on growth and pigmentation of Baccara roses. Physiol Plant 31:175–179
Article
Google Scholar
Bleeksma HC, Van doorn WG (2003) Emobolism in rose stem as a result of vascular occlusion by bacteria. Postharvest Biol Technol 29:335–341
Article
Google Scholar
Borochov A, Woodson WR (1989) Physiology and biochemistry of flower petal senescence. Hort Rev 11:15–43
CAS
Google Scholar
Borochov A, Tirosh T, Halevy AH (1976) Abscisic acid content of senescing petals on cut rose flowers as affected by sucrose and water stress. Plant Physiol 58:175–178
Google Scholar
Bowyer MC, Wills RBH, Badiyan D, Ku VVV (2003) Extending the postharvest life of carnation with nitric oxide-comparison of fumigation and in vivo delivery. Postharvest Biol Technol 30:281–286
CAS
Article
Google Scholar
Brummell DA, Harpster MH (2001) Cell wall metabolism in fruit softening and quality and its maturation in transgenic plants. Plant Mol Biol 47:311–340
PubMed
CAS
Article
Google Scholar
Buchanan-Wollaston V (1997) The molecular biology of leaf senescence. J Exp Bot 48:181–199
Article
Google Scholar
Buckeridge HS, Vergara CE, Carpita NC (1999) The mechanism of synthesis of a mixed-linkage (1-3) (1-4) β-d-glucan in maize. Evidence for multiple sites of glucosyl transfer in the synthase complex. Plant Physiol 120:1105–1116
PubMed
CAS
Article
Google Scholar
Carpita NC, Gibeaut DM (1993) Structural models of the primary cell walls in flowering plants. Consistency of molecular structure with the physical properties of walls during growth. Plant J 3:1–30
PubMed
CAS
Article
Google Scholar
Chamoni E, Khalighi AM, Joyce DC, Irving DE, Zamani ZA, Mostofi Y, Mohsen K (2005) Ethylene and anti-ethylene treatment effects on cut First-Red rose. J App Hort 7:3–7
Google Scholar
Cheftel JC, Cheftal H (1976) Introduction a la biochemie et a la technologie des aliments: Enterprise moderne d’ edition, Paris, vol 1, pp 303–315
Chernys JT, Zeevart JAD (2000) Characterization of the 9-cis-epoxycarotenoid dioxygenase gene family and the regulation of abscisic acid biosynthesis in avocado. Plant Physiol 124:343–353
PubMed
CAS
Article
Google Scholar
Chio L, Thompson J, Dumbroff E (1981) Simulation of the effects of leaf senescence on membranes treated with paraquat. Plant Physiol 67:415–420
Google Scholar
Claussen W, Hawker JS, Loveys BR (1985) Sucrose synthase activity, invertase activity, net photosynthetic rates and carbohydrate content of detached leaves of egg plants as affected by attached stems and shoots (sinks). J Plant Physiol 119:123–133
CAS
Google Scholar
Collier DE, Cummins WR (1991). Respiratory shift in developing petals of Saxifraga cernua. Plant Physiol 95:324–328
PubMed
CAS
Google Scholar
Comba ME, Benavides MP, Tomaro ML (1998) Effect of salt stress on antioxidant defense system in soybean root nodules. Aust J Plant Physiol 25:665–671
CAS
Article
Google Scholar
Coorts GD, Gartner JB, Mc Collum JP (1965) Effects of senescence and preservatives on respiration in cut flowers of Rosa hybrida ‘Velvet Times’. Proc Am Soc Hort Sci 86:779–790
CAS
Google Scholar
Cordenunsi BR (1989) Sintese da sacarose no amadurecimento da banana. Envolvimento da sacarose sintetase e sacarose fostato sintetase. Ph.D. thesis, Universidade de Sao Paulo
Coupe SA, Sinclair BK, Greer LA, Gapper NE, Watson LM, Hurst PL (2003) Analysis of acid invertase gene expression during the senescence of broccoli florets. Postharvest BiolTechnol 28:27–37
CAS
Article
Google Scholar
Dali N, Michaud D, Yelle S (1992) Evidence of the involvement of sucrose-phosphate synthase in the pathway of sugar accumulating tomato fruits. Plant Physiol 99:434–438
PubMed
CAS
Article
Google Scholar
De Jong DW (1972) Detergent extraction of enzymes form tobacco leaves varying in maturity. Plant Physiol 50:733–737
PubMed
Google Scholar
Dela G, Or E, Ovadia R, Nissim-Levi A, Weiss D, Oren-Shamir M (2003) Changes in anthocyanin concentration and composition in Jaguar rose flower due to transient high-temperature conditions. Plant Sci 164:333–340
CAS
Article
Google Scholar
Delledonne M (2005) NO news is good news for plants. Curr Opin Plant Biol 28:1–7
Google Scholar
De Vetten NC, Huber DJ (1990) Cell wall changes during the expansion and senescence of carnation (Dianthus caryophyllus) petals. Plant Physiol 78:447–454
Article
Google Scholar
Droillard MJ, Rouet-Mayer MA, Bureau JM, Lauriere C (1993) Membrane associated and soluble lipoxygenase isoform in tomato pericarp. Characterization and involvement on membrane alterations. Plant Physiol 103:1211–1219
PubMed
CAS
Google Scholar
Duan X, You YL, Su XG, Qu HX, Joyce DC, Jiang YM (2007) Influence of the nitric oxide donor, sodium nitropruside, on lipid peroxidation and antioxidant activity in pericarp tissue of longan fruit. J Hort Sci Biotech 82:467–473
CAS
Google Scholar
Duke ER, Mc Carty DR, Koch KE (1991) Organ-specific invertase deficiency in the primary root of an inbred maize-line. Plant Physiol 97:523–527
PubMed
CAS
Google Scholar
Enomoto H, Kohata K, Nakayama M, Yamaguchi Y, Ichimura K (2004) 2-C-methyl-D-erythritol is a major carbohydrate in petals of Phlox subulata possibly involved in flower development. J Plant Physiol 161:977–980
PubMed
CAS
Article
Google Scholar
Etxeberria F, Ganzalez P (2003) Evidences for a tonoplast-associated forms of sucrose synthase and its potential involvement in sucrose mobilization for the vacuole. J Exp Bot 54:1407–1414
PubMed
CAS
Article
Google Scholar
Evans RY, Reid MS (1988) Changes in carbohydrates and osmotic potential during rhythmic expansion of rose petals. J Am Soc Hort Sci 113:884–888
CAS
Google Scholar
Faragher JD, Wachtel E, Mayak S (1987) Changes in physical state of membrane lipids during senescence of rose petals. Plant Physiol 83:1037–1042
PubMed
CAS
Article
Google Scholar
Fieuw S, Willenbrink J (1987) Sucrose synthase and sucrose phosphate synthase in sugar beet plants (Beta vulgaris L. spp. altissima). J Plant Physiol 131:153–162
CAS
Google Scholar
Fischer AM, Dubbs WE, Baker RA, Fuller MA, Stephenson LC, Grimes HD (1999) Protein dynamics, activity and cellular localization of soybean lipoxygenases indicate distinct functional roles for individual isoforms. Plant J 19:543–554
PubMed
CAS
Article
Google Scholar
Fobel M, Lynch DV, Thompson JE (1987) Membrane deterioration in senescing carnation flowers. Plant Physiol 85:204–211
PubMed
CAS
Google Scholar
Fukuchi-Mizutani M, Savin K, Cornish E, Tanaka Y, Ashikari T, Kusumi T, Murata N (1995) Senescence-induced expression of a homologue of Δ-9-desaturase in rose petals. Plant Mol Biol 29:627–635
PubMed
CAS
Article
Google Scholar
Fukuchi-Mizutani M, Ishiguro K, Nakayama T, Utrunomiya Y, Yoshikazu T, Kusumi T, Ueda T (2000) Molecular and functional characterization of a rose lipoxygenase cDNA related to flower senescence. Plant Sci 160:129–137
PubMed
CAS
Article
Google Scholar
Ganelevin R, Zieslin N (2002) Contribution of sepals and gibberellin treatments to growth and development of rose (Rosa hybrida) flowers. Plant Growth Regul 37:225–261
Article
Google Scholar
Garello G, Menard C, Dan Seraeu B, Le Page-Degivry MT (1995) The influence of light quality on rose flower senescence: involvement of abscisic acid. Plant Growth Regul 8:225–236
Google Scholar
Giovannoni JJ, Della Penna D, Bennett AB, Fischer R (1992) Polygalactouronase and tomato fruit ripening. Hort Rev 13:67–100
CAS
Google Scholar
Goldberg R, Morwan C, Jauneau A, Jarvis MC (1996) Methyl esterification, de-esterification and gelation of pectins in the primary cell wall. In: Visser J, Voragen AGJ (eds) Pectins and pectinases. Prog Biotechnol 14:151–172. Elsevier Science, Amsterdam
Goldschmidt EE (1986) Maturation, ripening, senescence, and their control: a comparison between fruit and leaves. In: Monselis SP (ed) CRC hand book of fruit set and development. CRC Press, Inc., Boca Raton, ISBNO-8493-3260-S, pp 483–491
Goldschmidt EE, Huber SC (1992) Regulation of photosynthesis by end product accumulation in leaves of plants storing starch, sucrose and hexose sugar. Plant Physiol 99:5–19
Google Scholar
Gomez JM, Hernandez JA, Jimenez A, Del Rio LA, Sevilla F (1999) Differential response of antioxidative enzymes of chloroplast and mitochondria to long term NaCl stress on pea plants. Free Radic Res 31:11–18
Article
Google Scholar
Griffiths A, Barry C, Alpuche-Salis AG, Grierson D (1999) Ethylene and developmental signals regulate expression of lipoxygenase genes during tomato fruit ripening. J Exp Bot 50:793–798
CAS
Article
Google Scholar
Grossmann K, Hansen H (2001) Ethylene triggered abscisic acid: a principle in plant growth regulation? Physiol Plant 113:9–14
CAS
Article
Google Scholar
Guo FQ, Crawford NM (2005) Arabidopsis nitric oxide synthase 1 is targeted to mitochondria and protect against oxidative damage and dark induced senescence. Plant Cell 17:3436–3450
PubMed
CAS
Article
Google Scholar
Guo FQ, Okainoto M, Crawford NM (2003) Identification of a plant nitric oxide synthase gene involved in hormonal signaling. Science 302:100–103
PubMed
CAS
Article
Google Scholar
Halevy AH (1987) Assimilate allocation and flower development. In: Atherton JG (ed) Manipulation of flowering. Butter worth, London, pp 363–378
Halevy AH, Mayak S (1975) Interrelationship of several phytohormones in the regulation of rose petal senescence. Acta Hort 41:103–116
Google Scholar
Halvey AH, Mayak S (1981) Senescence and post harvest physiology of cut flowers: Part 2. Hort Rev 3:59–143
Google Scholar
Halvey AH, Whitehead CS, Kofranek AM (1984) Does pollination induce corolla abscission of cyclamen flowers by promoting ethylene production. Plant Physiol 75:1090–1093
Google Scholar
Hammond JBW (1982) Changes in amylase activity during rose bud opening. Scientia Hort 16:283–289
CAS
Article
Google Scholar
Hansen H, Grossmann K (2000) Auxin induced ethylene triggers abscisic acid biosynthesis and growth inhibition. Plant Physiol 124:1437–1448
PubMed
CAS
Article
Google Scholar
Hassan HM, Fridovich I (1977) Regulation of the synthesis of superoxide dismutase in Escherichia coli. J Biol Chem 292:7667–7672
Google Scholar
Hayashi H, Chino M (1990) Chemical composition of phloem sap from the uppermost internode of the rice plant. Plant Cell Physiol 31:247–251
CAS
Google Scholar
Heins RD (1980) Inhibition of ethylene synthesis and senescence in carnation by ethanol. J Am Soc Hort Sci 105:141–144
CAS
Google Scholar
Hernandez JA, Jimenez A, Mullineaux P, Servilla F (2000) Tolerance of pea to long term salt stress is associated with induction of antioxidant defenses. Plant Cell Environ 23:853–862
CAS
Article
Google Scholar
Hildebrand DF (1989) Lipoxygenases. Physiol Plant 76:249–253
CAS
Article
Google Scholar
Ho LC, Nichols R (1977) Translocation of 14C-sucrose in relation to changes in carbohydrate content in rose corollas cut at different stages of development. Ann Bot 41:227–242
Google Scholar
Hoeberichts FA, Woltering EJ (2003) Multiple mediators of plant programmed cell death: interplay of conserved cell death mechanism and plant-specific regulators. BioEssays 25:47–57
PubMed
Article
CAS
Google Scholar
Hoeberichts FA, de Jong AJ, Woltering EJ (2005) Apoptotic like cell death marks the early stages of gypsophilla (Gypsophila paniculata) petal senescence. Postharvest Biol Technol 35:229–236
CAS
Article
Google Scholar
Hossain Z, Mandal AKA, Datta SK, Biswas AK (2006) Decline in ascorbate peroxidase activity—a prerequisite factor for tepal senescence in gladiolus. J Plant Physiol 163:186–194
PubMed
CAS
Article
Google Scholar
Hubbard N L, Hubber SC, Pharr DM (1989) Sucrose phosphate synthase and acid invertase as determinants of sucrose concentration in developing muskmelon (Cucumis melo L.) fruits. Plant Physiol 91:1527–1534
PubMed
CAS
Google Scholar
Huber SC, Rufty TW, Kerr PS (1984) Effect of photoperiod on photosynthate partitioning and diurnal rhythms in sucrose phosphate synthase activity in leaves of soybean and tobacco. Plant Physiol 75:1080–1084
PubMed
CAS
Google Scholar
Hummel SG, Fischer AJ, Martin SM, Schafer FQ, Buettner GR (2006) Nitric oxide as a cellular antioxidant: a little goes a long way. Free Radic Biol Med 4:501–506
Article
CAS
Google Scholar
Hunter DA, Fessante A, Vernieri P, Reid MS (2004) Role of absicisic acid in perianth senescence of daffodil (Narcissus pseudonarcissus ‘Dutch Master’. Physiol Plant 121:313–321
PubMed
CAS
Article
Google Scholar
Ichimura K, Kishimoto M, Norikoshi R, Kawabata Y, Yamada K (2005) Soluble carbohydrates and variation in vase life of cut rose cultivars ‘Deliah’ and ‘Sonia’. J Hort Sci Biotech 80:280–286
CAS
Google Scholar
Itzhaki H, Borochov A, Shimon M (1990) Age related changes in petal membranes from attached and detached rose flower. Plant Physiol 94:1233–1236
PubMed
CAS
Article
Google Scholar
Jang J, Leon P, Zhou L, Sheen J (1997) Hexokinase as a sugar sensor in higher plants. Plant Cell 9:5–19
PubMed
CAS
Article
Google Scholar
Jin J, Shan N, Ma N, Bai J, Gao J (2006) Regulation of ascorbate peroxidase at the transcript level is involved in tolerance to postharvest water deficit stress in the cut rose (Rosa hybrida L.) cv. Samantha. Postharvest Biol Technol 40:236–243
CAS
Article
Google Scholar
Jona R, Accati E, Mayak S (1980) Senescence processes as reflected in change in polysaccharidic cell wall components. Acta Hort 113:153–158
Google Scholar
Kalaitzis P, Koehler SM, Tucker ML (1995) Cloning of a tomato polygalactouronases expressed in abscission. Plant Mol Biol 28:647–656
PubMed
CAS
Article
Google Scholar
Kaltaler REL (1971) Respiration and other post harvest physiological phenomenon of ‘Red American Beauty’ roses as affected by various chemicals. Ph.D. thesis, Cornell University, Ithaca
Kaltaler REL, Steponkus PL (1974) Uptake and metabolism of sucrose in cut roses. J Am Soc Hort Sci 99:490–493
CAS
Google Scholar
Kaltaler REL, Steponkus PL (1976) Factors affecting respiration in cut roses. J Am Soc Hort Sci 101:352–354
CAS
Google Scholar
Kening RE (1985) Gaillardia. In: Halevy AH (ed) Handbook of flowering, vol 5. CRC, Press, Boca Raton, pp 117–126
Khayat E, Zieslin N (1989) Translocation of 14C carbohydrate content and activity of the enzymes of sucrose metabolism in rose petals at different night temperatures. Physiol Plant 76:581–585
CAS
Article
Google Scholar
Kinde H, Zeevart JAD (1997) The five classical plant hormones. Plant Cell 9:1197–1210
Article
Google Scholar
Kolomiets MA, Long X, Endara ME, Davis KR, Ausubel FM, Peterman TK (1993) An arabiodopsis thaliana lipoxygenase gene can be induced by pathogens, abscisic acid and methyl jasmonate. Plant Physiol 101:441–450
Article
Google Scholar
Kolomiets MV, Hannapel DJ, Chen H, Tymeson M, Gladon RJ (2001) Lipoxygenase is involved in the control of potato tuber development. Plant Cell 13:613–626
PubMed
CAS
Article
Google Scholar
Komina O, Zhou Y, Sarath G, Chollet R (2002) In vivo and in vitro phosphorylation of membrane and soluble forms of soybean nodule sucrose synthase. Plant Physiol 129:1664–1673
PubMed
CAS
Article
Google Scholar
Koornneef M, Van der Veen JM (1980) Induction and analysis of gibberellin-sensitive mutant in Arabiodopsis thaliana (L.) Heynh. Theo App Gene 58:257–263
Article
Google Scholar
Ku VVV, Wills RBH, Lesham YY (2000) Use of nitric oxide to reduce postharvest water loss from horticultural produce. J Hort Sci Biotech 75:268–270
CAS
Google Scholar
Kuiper D, Van Reenen HS, Ribot SA (1991) Effect of gibberellic acid on sugar transport in to petals of ‘Madelon’ rose flowers during bud opening. Acta Hort 298:93–95
Google Scholar
Kumar N, Srivastava GC, Dixit K, Mahajan A, Pal M (2007a) Role of carbohydrates in flower bud opening in rose (Rosa hybrida L.). J Hort Sci Biotech 82:235–242
CAS
Google Scholar
Kumar N, Srivastava GC, Dixit K (2007b) Role of superoxide dismutase during petal senescence in rose (Rosa hybrida L.). J Hort Sci Biotech 82:673–678
CAS
Google Scholar
Lamattina L, Beligni GL, Gracia-Mata C, Laxalt AM (2001) US Patent. 6.242, 384B1
Laxalt AM, Beligni MV, Lamattina L (1997) Nitric oxide preserves the level of chlorophyll in potato leaves infected by Phytophthora infestens. Eur J Plant Pathol 103:643–651
CAS
Article
Google Scholar
Legge RL, Thompson JE (1983) Involvement of hydroperoxide and as ACC-derived free radical in the formation of ethylene. Phytochem 22:2161–2166
CAS
Article
Google Scholar
Lesham YY, Haramaty E (1996) The characterization and contrasting effect of the nitric oxide free radical in vegetable stress and senescence of Pisum sativum L. foliage. J Plant Physiol 148:258–263
Google Scholar
Lesham YY, Kuiper PJC (1996) Is there a GAS (general adaptation syndrome) response to various types of environmental stresses? Biol Plant 38:1–18
Article
Google Scholar
Lesham YY, Pinchasov Y (2000) Non-invasive photoacoustic spectroscopic determination of relative endogenous nitric oxide and ethylene content stoichimetry during the ripening of strawberries Fragaria anannasa ‘Dutch’ and avocado Persea Americana ‘Mill’. J Exp Bot 51:1471–1473
Article
Google Scholar
Leshem YY, Halevy AH, Frenkil C (1986) In: Leshem YY, Hallevy AH, Frenkel C (eds) Free radical and senescence and control of plant senescence. Elsevier, New York, pp 100–116
Leuerentz MK, Wagstaff C, Rogers HJ, Stead AD, Chanasul U, Silkowski H, Thomas B, Wei Chert H, Feussner I, Griffiths G (2002) Characterization of a novel lipoxygenase independent senescence mechanism in Alstroemeria peruviana floral tissue. Plant Physiol 130:273–283
Article
CAS
Google Scholar
Li CR, Zhang XB, Hew CS (2003) Cloning of a sucrose phosphate synthase gene highly expressed in flowers from the tropical epiphytic orchid Oncidium goldiana. J Exp Bot 54:2189–2191
PubMed
CAS
Article
Google Scholar
Liavonchanka A, Feussner I (2006) Lipoxygenases: occurrence, functions and catalysis. J Plant Physiol 163:348–357
PubMed
CAS
Article
Google Scholar
Lingle SE, Dunlap JR (1987) Sucrose metabolism in netted muskmelon fruit during development. Plant Physiol 84:386–389
PubMed
CAS
Google Scholar
Lipton SA, Choi YB, Pan ZH, Lei SZ, Chen HS (1993) A redox based mechanism for the neuro-protective and neuro-destructive effects of nitric oxide and related-compounds. Nature 364:626–632
PubMed
CAS
Article
Google Scholar
Lohani S, Trivedi PK, Nath P (2004) Changes in activities of cell wall hydrolases during ethylene-induced ripening in banana effect of 1-MCP, ABA and IAA. Postharvest Biol Technol 31:119–126
CAS
Article
Google Scholar
Ma N, Cai L, Lu WJ, Tan H, Gao JP (2005) Ethylene influences flower opening of cut roses (Rosa hybrida L.) by regulating the genes for ethylene biosynthetic enzymes. Sci Chin (C series) 48:434–444
CAS
Article
Google Scholar
Mac Rae E, Quick WP, Benker C, Stitt M (1992) Carbohydrate metabolism during post harvest ripening in kiwifruit. Planta 188:314–323
CAS
Article
Google Scholar
Marangoni AG, Palma T, Stanley DW (1996) Membrane effects on post harvest physiology. Postharvest Biol Technol 7:193–217
Article
Google Scholar
Marousky FJ (1969) Vascular blockage, water absorption, stomatal opening and respiration of cut Better times roses treated with 8-hydroxyquinoline citrate and sucrose. J Am Soc Hort Sci 94:223–226
CAS
Google Scholar
Martin C, Gerats T (1993) Control of pigment biosynthesis genes during petal development. Plant Cell 5:1253–1264
PubMed
CAS
Article
Google Scholar
Mayak S, Halevy AH (1972) Interrelationship of ethylene and abscisic acid in the control of rose petal senescence. Plant Physiol 50:341–346
PubMed
CAS
Google Scholar
Mayak S, Legge RL, Thompson JE (1983) Superoxide radical production by microsomal membranes from senescing carnation flowers: an effect on membrane fluidity. Phytochem 22:1375–1380
CAS
Article
Google Scholar
Melan MA, Dong X, Endara ME, Davis KR, Ausubel FM, Peterman TK (1993) An Arabiodopsis thaliana lipoxygenase gene can be induced by pathogens, abscisic acid and methyl jasmonate. Plant Physiol 101:441–450
PubMed
CAS
Article
Google Scholar
Mendicino J (1960) Sucrose phosphate synthesis in wheat germ and green leaves. J Biol Chem 235:3347–3352
PubMed
CAS
Google Scholar
Mol J, Jenkins G, Schafer E, Weiss D (1996) Signal perception, transduction and gene expression involved in anthocyanin biosynthesis. Cri Rev Plant Sci 15:525–557
CAS
Article
Google Scholar
Moline HE, La Motte CE, Gochnawr C, Mc Namer A (1972) Further comparative studies on pectin esterase in relation to leaf and flower abscission. Plant Physiol 50:655–659
PubMed
CAS
Google Scholar
Monteiro JA, Nell TA, Barrett JE (2001) Post-production of potted miniature rose: flower respiration and single flower longevity. J Am Soc Hort Sci 126:134–139
Google Scholar
Mor Y, Johnson F, Faragher JD (1989) Preserving the quality of cold-stored rose flowers with ethylene antagonists. Hort Sci 24:640–641
CAS
Google Scholar
Muller R, Stummann BM, Andersen AS, Serek M (1999a) Involvement of ABA in postharvest life of miniature potted roses. Plant Growth Regul 29:143–150
CAS
Article
Google Scholar
Muller R, Andersen AS, Serek M (1999b) Differences in display life of miniature potted roses. Scientia Hort 76:59–71
Article
Google Scholar
Muller R, Lind-Iversen S, Stumann BM, Serek M (2000a) Expression of genes for ethylene biosynthetic enzymes and an ethylene receptor in senescing flowers of miniature roses. J Hort Sci Biotech 75:12–18
CAS
Google Scholar
Muller R, Stumann BM, Serek M (2000b) Characterization of an ethylene receptor family with differential expression in rose (Rosa hybrida L.) flowers. Plant Cell Rep 19:1232–1239
CAS
Article
Google Scholar
Muller R, Owen CA, Xue ZT, Welander M, Stumann BM (2002) Characterization of two CTR-like protein kinase in Rosa hybrida and their expression during flower senescence and in response to ethylene. J Exp Bot 53:1223–1225
PubMed
CAS
Article
Google Scholar
Muller R, Owen CA, Xue ZT, Welander M, Stumann BM (2003) The transcription factor EIN 3 is constitutively expressed in miniature roses with differences in postharvest life. J Hort Sci Biotech 78:10–14
Google Scholar
Mur L (1995) Thesis, Vrije University, Amsterdam
Neill SJ, Desikan R, Hancock JT (2003) Nitric oxide signaling in plants. New Phytol 159:11–35
CAS
Article
Google Scholar
Nichols R (1973) Senescence of the cut carnation flower: respiration and sugar status. J Hort Sci 48:111–121
CAS
Google Scholar
Nielson k, Deroles SC, markham KR, Bradeley JM, Podivinsky E, Hanson D (2002) Antisense flavonol synthase alters co-pigmentation and flower color in lisianthus. Mol Breed 9:217–229
Article
Google Scholar
Nishikawa F, Kato M, Wang R, Hyodo H, Ikoma Y, Sugiura M, Yano M (2003) Two ascorbate peroxidases from broccoli: identification, expression and characterization of their recombinant proteins. Postharvest Biol Technol 27:147–196
CAS
Article
Google Scholar
Nishikawa F, Iwama T, Kato M, Hyodo H, Ikoma Y, Yano M (2005) Effects of sugars on ethylene synthesis and responsiveness in harvested broccoli florets. Postharvest Biol Technol 36:157–165
CAS
Article
Google Scholar
Noda N, Kanno Y, Kato N, Kazuma K, Suzuki M (2004) Regulation of gene expression involved in flavonol and anthocyanin biosynthesis during petal development in lisianthus (Eustoma Grandi). Physiol Plant 122:305–313
CAS
Article
Google Scholar
O’Donoghue EM, Somerfield SD, Heyes JA (2002) Vase solution containing sucrose result in changes to cell walls of Sandersonia (Sandersonia aurantiaca) flowers. Postharvest Biol Technol 26:285–294
CAS
Article
Google Scholar
Ohe M, Rapolu M, Mieda T, Miyagawa Y, Yabuta Y, Yoshimura K, Shigloka S (2005) Decline in leaf photoxidative-stress tolerance with age in tobacco. Plant Sci 168:1487–1493
CAS
Article
Google Scholar
Ohyama A, Ito H, Sato T, Nishimura S, Imai T, Hirai M (1995) Suppression of acidic invertase activity by antisense RNA modifies the sugar composition of tomato fruit. Plant Cell Physiol 36:369–376
CAS
Google Scholar
Page-Degivry MThLe, Orlandini M, Garello G, Barthe Ph, Gudin S (1991) Regulation of ABA levels in senescing petals of rose flowers. J Plant Growth Regul 10:67–72
Article
Google Scholar
Panavas T, Rubinstein B (1998) Oxidative events during programmed cell death of daylily petals. Plant Sci 133:125–138
CAS
Article
Google Scholar
Panavas T, Walker EL, Rubinstein B (1998a) Possible involvement of abscisic acid in senescence of daylily petals. J Exp Bot 49:1987–1997
CAS
Article
Google Scholar
Panavas T, Reid PD, Rubinstein B (1998b) Programmed cell death of daylily petals: activity of wall based enzymes and effects of heat shock. Plant Physiol Biochem 36:379–388
CAS
Article
Google Scholar
Pastori D, Padalino D, Simone L, Valenti D, Di-Fanzo N, Passerella S (2000) Inhibition by α-tocopherol and l-ascorbate of linoleate hydroperoxidation and β-carotene bleaching activities in durum wheat semolina. J Cereal Sci 31:41–54
Article
CAS
Google Scholar
Podd LA, Van Staden J (1998) The role of ethanol and acetaldehyde in flower senescence and fruit ripening-a review. Plant Growth Regul 26:183–189
CAS
Article
Google Scholar
Pompodakis NE, Terry LA, Joyce DC, Lydakis DE, Papadimitriiou MD (2005) Effect of seasonal variation and storage temperature on leaf chlorophyll fluorescence and vase life of cut roses. Postharvest Biol Technol 36:1–8
CAS
Article
Google Scholar
Rattanawisalanon C, Kesta S, Van Doorn WG (2003) Effect of amino oxyacetic acid and sugars on the vase life of Dendrobium flowers. Postharvest Biol Technol 29:93–100
CAS
Article
Google Scholar
Redgevell RJ, Fischer M, Kendal E, Mac Rae EA (1997) Galactose loss and fruit ripening: high molecular weight arabino-galactans in the pectic polysaccharides of fruit cell walls. Planta 203:174–181
Article
Google Scholar
Rout-Mayer MA, Bureau JM, Lauriere C (1992) Identification and characterization of lipoxygenase isoform in senescing carnation petals. Plant Physiol 98:971–978
Article
Google Scholar
Roy P, Roy SP, Mitra A, Kulkarni AP (1994) Superoxide generation by lipoxygenase in the presence of NADH and NADPH. Biochem Biophy Acta 1214:171–179
CAS
Google Scholar
Rufty TW, Huber SC (1983) Changes in starch formation and activities of sucrose phosphate synthase and cytoplasmic fructose −1, 6 bisphosphate in response to source-sink alterations. Plant Physiol 72:474–480
PubMed
CAS
Google Scholar
Sabehat A, Zieslin N (1994) GA3 effects on post-harvest alterations in cell membranes of rose (Rosa × Hybrida) petals. J Plant Physiol 144:513–517
CAS
Google Scholar
Sablowski WM, Meyerowitz EM (1998) A homology of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETLA3/PISILLATA. Cell 92:93–103
PubMed
CAS
Article
Google Scholar
Sajjaanantakul T, Pitifer LA (1991) Pectin esterase. In: Walter RH (ed) The chemistry and technology of pectins. Academic Press, San Diego, pp 135–165
Saks Y, Van Staden J, Smith MT (1992) Effect of gibberellic acid on carnation flower senescence: evidence that the delay of carnation flower senescence by gibberellic acid depends on the stage of flower development. Plant Growth Regul 11:45–51
CAS
Article
Google Scholar
Saravitz DM, Siedow JN (1995) The Lipoxygenase isoenzymes in soybean leaves: changes during leaf development, after wounding and following reproductive sink removal. Plant Physiol 107:535–543
PubMed
CAS
Google Scholar
Serek M, Tamari G, Sisler EC, Borachov A (1995) Inhibition of ethylene-induced cellular senescence symptoms by 1-MCP, a new inhibitor of ethylene action. Physiol Plant 94:229–232
CAS
Article
Google Scholar
Seymour GB, Gross KC (1996) Cell wall disassembly and fruit softening. Postharvest News Info 7:45N–52N
Google Scholar
Shaked-Sachray L, Weiss D, Reuveni M, Nissim-Levi A, Oren-Shamir M (2002) Increased anthocyanin accumulatrion in aster flowers at elevated temperature due to magnesium treatment. Physiol Plant 114:559–565
PubMed
CAS
Article
Google Scholar
Siedow JN (1991) Plant Lipoxygenase: structure and function. Annu Rev Plant Physiol Plant Mol Biol 42:145–188
CAS
Article
Google Scholar
Siegelman HW (1952) The respiration of rose and gardenia flowers. Proc Am Soc Hort Sci 59:496–500
CAS
Google Scholar
Siegelman HW, Chow CT, Biale JB (1958) Respiration of developing rose petals. Plant Physiol 33:403–409
PubMed
CAS
Article
Google Scholar
Smart CM (1994) Gene expression during leaf senescence. New Phytol 126:419–448
CAS
Article
Google Scholar
Sturm A (1999) Invertases. Primary structures, functions and roles in plant development and sucrose partitioning. Plant Physiol 121:1–7
PubMed
CAS
Article
Google Scholar
Sylvestre I, Droillard MJ, Bureau JM, Paulin A (1989) Effects of ethylene rise on the peroxidation of membrane lipids during the senescence of cut carnations. Plant Physiol Biochem 27:407–413
CAS
Google Scholar
Tan H, Liu X, Ma N, Xue J, Lu W, Bai J, Gao J (2006) Ethylene—influnced flower opening and expression of genes encoding ETRs, and EIN3s in two cut rose cultivars. Postharvest Biol Technol 40:97–105
CAS
Article
Google Scholar
Tanse K, Shiratake K, Mori H, Yamaki (2002) Changes in the phosphorylation state of sucrose synthase during development of Japanese pear fruit. Physiol Plant 114:21–26
Article
Google Scholar
Thompson JE, Froese CD, Madey E, Smith MD, Hong YW (1998) Lipid metabolism during plant senescence. Progress Lipid Res 37:119–141
CAS
Article
Google Scholar
Tucker GA, Schindler CB, Roberts JA (1984) Flower abscission in mutant tomato plants. Planta 160:164–167
CAS
Article
Google Scholar
Urban L, Pyrrha P, Perez G (1994) Effect of season on transpiration of ‘Sonia’ rose leaves grown in rockwool at two different level of electrical conductivity. Agronomy 2:103–111
Article
Google Scholar
Valenzuela-Vazquez M, Picchioni GA, Murray LW, Mac Kay WA (2007) Benficial role of 1-Methyl cyclopropene for cut Lupinus havardii recemes exposed to ethephon. Hort Sci 42:113–119
CAS
Google Scholar
Van der Kop DAM, Ruys G, Dees D, Van der Schoot C, De Beer AD, Van doorn WG (2003) Expression of defender against apoptotic death (DAD1) in Iris and Dianthus petals. Physiol Plant 117:256–263
Article
Google Scholar
Van Doorn WG (1990) Aspiration of air at the cut surface of rose stems and its effect on the uptake of water. J Plant Physiol 137:160–164
Google Scholar
Van Doorn WG (2001) Role of soluble carbohydrates in flower senescence: a survey. Acta Hort 543:179–183
Google Scholar
Van Doorn WG (2004) Is petal senescence is due to sugar starvation. Plant Physiol 134:35–42
PubMed
Article
CAS
Google Scholar
Van Doorn WG, Schroder C (1995) The abscission of rose petals. Ann Bot 76:539–544
Article
Google Scholar
Van Doorn WG, Stead AD (1997) Abscission of flower and floral parts. J Exp Bot 48:821–837
Article
Google Scholar
Van Doorn WG, Schurer K, De Witte Y (1989) Role of endogenous bacteria in vascular blockage of cut rose flowers. J Plant Physiol 134:371–381
Google Scholar
Van Doorn WG, Groenewegen G, Van de Pol PA, Berkholst CEM (1991) Effects of carbohydrate and water status on flower opening of cut Madelon roses. Postharvest BiolTechnol 1:47–57
Article
Google Scholar
Van Doorn WG, Abadie P, Belede PJM (2002) Alkylethoxylate surfactants for rehydration of roses and bouvardia flowers. Postharvest Biol Technol 24:327–333
Article
Google Scholar
Van Meeteren U, Van Gelder H (1999) Effect of time since harvest and handling condition on rehydration ability of cut chrysanthemum flowers. Postharvest BiolTechnol 16:169–177
Article
Google Scholar
Verlinden S, Garcia JJV (2004) Sucrose loading decreases ethylene responsiveness in carnation (Dianthus caryophyllus cv. White Sim) petals. Postharvest BiolTechnol 31:305–312
CAS
Article
Google Scholar
Vick BA, Zimmerman DC (1987) Oxidative system for modification of fatty acids: the lipoxygenase pathway. In: Stumpf PK, Conn EE (eds) The biochemistry of plants, vol 9. Academic Press, Orlando, pp 53–90
Wagstaff C, Malcolm P, Rafiq A, Leverentz M, Griffiths G, Thomas B, Stead A, Rogers H 2003 Programmed cell death (PCD) processes begin extremely early in Alostromeria petal senescence. New Phytol 160:49–59
CAS
Article
Google Scholar
Waithaka K, Dodge LL, Reid MS (2001) Carbohydrate traffic during opening of gladiolus florets. JHortSci Biotech 76:20–24
Google Scholar
Weinstein LH (1957) Senescence of roses: I. Chemical changes associated with senescence of Cut Better Times roses. Contr Boyce Thompson Inst 19:33–48
CAS
Google Scholar
Weiss D (2000) Regulation of flower pigmentation and growth: multiple signaling pathways control anthocyanin synthesis in expanding petals. Physiol Plant 110:152–157
CAS
Article
Google Scholar
Whitehead CS, Vasiljevic D (1993) Role of short chain saturated fatty acids in the control of ethylene sensitivity in senescing carnation flowers. Physiol Plant 8:243–250
Article
Google Scholar
Wie Z, Zhang H, Gu ZP, Zhang JJ (2003) Cause of senescence of nine sorts of flowers. Acta Bot Sinica 33:429–436
Google Scholar
Wiemken-Gehrig V, Wiemken A, Matile P (1974) Mobilization von zellwandstoffen in der welkenden Blute Von Ipomea tricolor Cav. Planta 115:297–307
CAS
Article
Google Scholar
Williams M, Salas JJ, Sanchez J, Harwood JL (2000) Lipoxygenase pathway in olive callus culture (Olea europaea). Phytochem 53:13–19
CAS
Article
Google Scholar
Wills RBH, Ku VVV, Leshem YY (2000) Fumigation with nitric oxide to extend the postharvest life of strawberries. Postharvest Biol Technol 18:75–79
CAS
Article
Google Scholar
Woltering EJ, Van Doorn WG (1988) Role of ethylene in senescence of petals. Morphological and taxonomical relationship. J Exp Bot 39:1605–1616
CAS
Article
Google Scholar
Woodson WR, Lawton KA (1988) Ethylene induced gene expression in carnation petals. Relationship to autocatalytic ethylene production and senescence. Plant Physiol 87:498–503
PubMed
CAS
Article
Google Scholar
Worrell AC, Bruneau JM, Summerfelt K, Boersig M, Vollker TA (1991) Expression of a maize sucrose phosphate synthase in tomatoes alters leaf carbohydrate partitioning. Plant Cell 3:1121–1130
PubMed
CAS
Article
Google Scholar
Wu MJ, Zacarias L, Mikal E, Saltveit ME, Reid MS (1992) Alcohol and carnation senescence. HortSci 27:136–138
CAS
Google Scholar
Yamada T, Takatsu Y, Manbe T, Kasumi M, Marubashi W (2003) Suppresive effect of trehalose on apoptotic cell death leading to petal senescence in ethylene-insensitive flowers of gladiolus. Plant Sci 164:213–221
CAS
Article
Google Scholar
Yamada T, Takatsu Y, Kasumi M, Marubashi W, Ichimura K (2004) A homolog of the defender against apoptotic death gene (DAD1) in senescing gladiolus petals in down-regulated prior to the onset of programmed cell death. J Plant Physiol 161:1281–1283
PubMed
CAS
Article
Google Scholar
Ye Z, Rodriguez R, Tran A, Hoang H, de los Santos D, Brown S, Vellanoweth L (2000) The developmental transition to flowering repress ascorbate peroxidase activity and induces enzymatic lipid peroxidation in leaf tissue in Arabiodopsis thaliana. Plant Sci 58:115–127
Article
Google Scholar
Yoshimura K, Yabuta Y, Ishikawa T, Shigeoka S (2000) Expression of spinach ascorbate peroxidase isoenzymes in response to oxidative stresses. Plant Physiol 123:223–323
PubMed
CAS
Article
Google Scholar
Zhang Y, Guo W, Chen S, Han L, Li Z (2007) The role of N-laurayl ethanolamine in the regulation of senescence of cut carnations (Dianthus carophyllus). J Plant physiol 164:993–1001
PubMed
CAS
Article
Google Scholar
Zhao M, Zhao X, Wu Y, Zhang L (2007) Enhanced sensitivity to oxidative stress in an Arabidopsis nitric oxide synthase mutant. J Plant Physiol 164:737–745
PubMed
CAS
Article
Google Scholar