Skip to main content

Flower bud opening and senescence in roses (Rosa hybrida L.)

Abstract

The flower is the most significant and beautiful part of plants. Flowers are very useful organs in plant developmental phenomenon. During flower bud opening, various events takes place in a well defined sequence, representing all aspects of plant development, such as cell division, cellular differentiation, cell elongation or expansion and a wide spectrum of gene expression. The complexity of flower bud opening illustrates that various biological mechanisms are involved at different stages. Senescence represents the ultimate stage of floral development and results in wilting or abscission of whole flower or flower parts. Senescence is an active process and governed by a well defined cell death program. Once a flower bud opens, the programmed senescence of petal allows the removal of a metabolically active tissue. In leaves, this process can be reversed, but in floral tissue it cannot, indicating that a highly controlled genetic program for cell death is operating. The termination of a flower involves at least two, sometimes overlapping, mechanisms. In one, the perianth abscises before the majority of its cells initiate a cell death program. Abscission may occur before or during the mobilization of food reserves to other parts of the plant. Alternatively, the petals may be more persistent, so that cell deterioration and food remobilization occur while the petals are still part of the flower. The overall pattern of floral opening varies widely between plant genera, therefore, a number of senescence parameters have been used to group plants into somewhat arbitrary categories. Opening and senescence of rose flower is still an unsolved jigsaw in the world of floriculture industry and the mechanism behind the onset of the very early events in the sequence still remains to be elucidated. Hence, for advancing the knowledge on the pertinent aspect of bud opening and senescence the literature has been cited under this review.

This is a preview of subscription content, access via your institution.

References

  • Abeles FB, Morgan PW, Saltveit ME (eds) (1992) Ethylene in plants biology. Academic Press, San Diego

    Google Scholar 

  • Alderton WK, Cooper CE, Knowles RG (2001) Nitric oxide synthases: structure, function and inhibition. Biochem J 357:593–615

    PubMed  CAS  Article  Google Scholar 

  • Amir J, Preiss J (1982) Kinetic characterization of spinach leaf sucrose-phosphate synthase. Plant Physiol 69:1027–1030

    PubMed  CAS  Article  Google Scholar 

  • Andersen L, Williams MH, Serek M (2004) Reduced water availability improves drought tolerance of potted miniature roses: is the ethylene pathway involved. J Hort Sci Biotech 79:1–13

    CAS  Google Scholar 

  • Asada K, Takahashi M (1987) Production and scavenging of active oxygen in photosynthesis. In: Kyle DJ et al (eds) Photoinhibition (Topics in photosynthesis). Elsevier, pp 227–287

  • Avisar I, Pesis E (1991) The control of postharvest decay in table grapes using acetaldehyde vapour. Ann Appl Biol 118:229–237

    Article  Google Scholar 

  • Azama K, Abe S, Sugimoto H, Davies E (2003) Lysine containing proteins in maize endosperm: a major contribution from cytoskeleton-associated carbohydrate metabolism enzyme. Planta 217:628–638

    PubMed  CAS  Article  Google Scholar 

  • Babitha MP, Prakash HS, Shetty HS (2004) Purification and properties of lipoxygenase induced in downy mildew resistant pearl millet seedling due to infection with Sclerospora graminicola. Plant Sci 166:31–39

    CAS  Article  Google Scholar 

  • Beligni MV, Fath A, Bethke PC, Lamattina L, Jones R (2002) Nitric oxide act as an antioxidant and delays programmed cell death in barley aleurone cells. Plant Physiol 129:1642–1650

    PubMed  CAS  Article  Google Scholar 

  • Ben-Nissan G, Weiss D (1996) The petunia homologue of tomato gast1: transcript accumulation coincides with gibberellin-induced corolla cell elongation. Plant Mol Biol 32:1067–1074

    PubMed  CAS  Article  Google Scholar 

  • Bethke PC, Badger HR, Jones RL (2004) Apoplastic synthesis of nitric oxide by plant tissues. Plant Cell 16:332–341

    PubMed  CAS  Article  Google Scholar 

  • Bhownik PK, Matsuit T, Kawada K, Suzuki H (2001) Seasonal changes of asparagus spears in relation to enzyme activities and carbohydrate content. Scientia Hort 88:1–9

    Article  Google Scholar 

  • Biale JB, Young RE, Appleman WE (1957) Metabolic processes in cytoplasmic particles of the avocado fruit. I. Preparation procedures, co-factor requirements and oxidative phosphorylation. Physiol Plant 10:48–63

    CAS  Article  Google Scholar 

  • Bieleski R (1993) Fructan hydrolysis during petal expansion in the ephemeral daylily flower. Plant Physiol 109:557–565

    Google Scholar 

  • Biran I, Halvey AH (1974) Effect of varying light intensity and temperature applied to whole plants, or locally to leaves or flower buds, on growth and pigmentation of Baccara roses. Physiol Plant 31:175–179

    Article  Google Scholar 

  • Bleeksma HC, Van doorn WG (2003) Emobolism in rose stem as a result of vascular occlusion by bacteria. Postharvest Biol Technol 29:335–341

    Article  Google Scholar 

  • Borochov A, Woodson WR (1989) Physiology and biochemistry of flower petal senescence. Hort Rev 11:15–43

    CAS  Google Scholar 

  • Borochov A, Tirosh T, Halevy AH (1976) Abscisic acid content of senescing petals on cut rose flowers as affected by sucrose and water stress. Plant Physiol 58:175–178

    Google Scholar 

  • Bowyer MC, Wills RBH, Badiyan D, Ku VVV (2003) Extending the postharvest life of carnation with nitric oxide-comparison of fumigation and in vivo delivery. Postharvest Biol Technol 30:281–286

    CAS  Article  Google Scholar 

  • Brummell DA, Harpster MH (2001) Cell wall metabolism in fruit softening and quality and its maturation in transgenic plants. Plant Mol Biol 47:311–340

    PubMed  CAS  Article  Google Scholar 

  • Buchanan-Wollaston V (1997) The molecular biology of leaf senescence. J Exp Bot 48:181–199

    Article  Google Scholar 

  • Buckeridge HS, Vergara CE, Carpita NC (1999) The mechanism of synthesis of a mixed-linkage (1-3) (1-4) β-d-glucan in maize. Evidence for multiple sites of glucosyl transfer in the synthase complex. Plant Physiol 120:1105–1116

    PubMed  CAS  Article  Google Scholar 

  • Carpita NC, Gibeaut DM (1993) Structural models of the primary cell walls in flowering plants. Consistency of molecular structure with the physical properties of walls during growth. Plant J 3:1–30

    PubMed  CAS  Article  Google Scholar 

  • Chamoni E, Khalighi AM, Joyce DC, Irving DE, Zamani ZA, Mostofi Y, Mohsen K (2005) Ethylene and anti-ethylene treatment effects on cut First-Red rose. J App Hort 7:3–7

    Google Scholar 

  • Cheftel JC, Cheftal H (1976) Introduction a la biochemie et a la technologie des aliments: Enterprise moderne d’ edition, Paris, vol 1, pp 303–315

  • Chernys JT, Zeevart JAD (2000) Characterization of the 9-cis-epoxycarotenoid dioxygenase gene family and the regulation of abscisic acid biosynthesis in avocado. Plant Physiol 124:343–353

    PubMed  CAS  Article  Google Scholar 

  • Chio L, Thompson J, Dumbroff E (1981) Simulation of the effects of leaf senescence on membranes treated with paraquat. Plant Physiol 67:415–420

    Google Scholar 

  • Claussen W, Hawker JS, Loveys BR (1985) Sucrose synthase activity, invertase activity, net photosynthetic rates and carbohydrate content of detached leaves of egg plants as affected by attached stems and shoots (sinks). J Plant Physiol 119:123–133

    CAS  Google Scholar 

  • Collier DE, Cummins WR (1991). Respiratory shift in developing petals of Saxifraga cernua. Plant Physiol 95:324–328

    PubMed  CAS  Google Scholar 

  • Comba ME, Benavides MP, Tomaro ML (1998) Effect of salt stress on antioxidant defense system in soybean root nodules. Aust J Plant Physiol 25:665–671

    CAS  Article  Google Scholar 

  • Coorts GD, Gartner JB, Mc Collum JP (1965) Effects of senescence and preservatives on respiration in cut flowers of Rosa hybrida ‘Velvet Times’. Proc Am Soc Hort Sci 86:779–790

    CAS  Google Scholar 

  • Cordenunsi BR (1989) Sintese da sacarose no amadurecimento da banana. Envolvimento da sacarose sintetase e sacarose fostato sintetase. Ph.D. thesis, Universidade de Sao Paulo

  • Coupe SA, Sinclair BK, Greer LA, Gapper NE, Watson LM, Hurst PL (2003) Analysis of acid invertase gene expression during the senescence of broccoli florets. Postharvest BiolTechnol 28:27–37

    CAS  Article  Google Scholar 

  • Dali N, Michaud D, Yelle S (1992) Evidence of the involvement of sucrose-phosphate synthase in the pathway of sugar accumulating tomato fruits. Plant Physiol 99:434–438

    PubMed  CAS  Article  Google Scholar 

  • De Jong DW (1972) Detergent extraction of enzymes form tobacco leaves varying in maturity. Plant Physiol 50:733–737

    PubMed  Google Scholar 

  • Dela G, Or E, Ovadia R, Nissim-Levi A, Weiss D, Oren-Shamir M (2003) Changes in anthocyanin concentration and composition in Jaguar rose flower due to transient high-temperature conditions. Plant Sci 164:333–340

    CAS  Article  Google Scholar 

  • Delledonne M (2005) NO news is good news for plants. Curr Opin Plant Biol 28:1–7

    Google Scholar 

  • De Vetten NC, Huber DJ (1990) Cell wall changes during the expansion and senescence of carnation (Dianthus caryophyllus) petals. Plant Physiol 78:447–454

    Article  Google Scholar 

  • Droillard MJ, Rouet-Mayer MA, Bureau JM, Lauriere C (1993) Membrane associated and soluble lipoxygenase isoform in tomato pericarp. Characterization and involvement on membrane alterations. Plant Physiol 103:1211–1219

    PubMed  CAS  Google Scholar 

  • Duan X, You YL, Su XG, Qu HX, Joyce DC, Jiang YM (2007) Influence of the nitric oxide donor, sodium nitropruside, on lipid peroxidation and antioxidant activity in pericarp tissue of longan fruit. J Hort Sci Biotech 82:467–473

    CAS  Google Scholar 

  • Duke ER, Mc Carty DR, Koch KE (1991) Organ-specific invertase deficiency in the primary root of an inbred maize-line. Plant Physiol 97:523–527

    PubMed  CAS  Google Scholar 

  • Enomoto H, Kohata K, Nakayama M, Yamaguchi Y, Ichimura K (2004) 2-C-methyl-D-erythritol is a major carbohydrate in petals of Phlox subulata possibly involved in flower development. J Plant Physiol 161:977–980

    PubMed  CAS  Article  Google Scholar 

  • Etxeberria F, Ganzalez P (2003) Evidences for a tonoplast-associated forms of sucrose synthase and its potential involvement in sucrose mobilization for the vacuole. J Exp Bot 54:1407–1414

    PubMed  CAS  Article  Google Scholar 

  • Evans RY, Reid MS (1988) Changes in carbohydrates and osmotic potential during rhythmic expansion of rose petals. J Am Soc Hort Sci 113:884–888

    CAS  Google Scholar 

  • Faragher JD, Wachtel E, Mayak S (1987) Changes in physical state of membrane lipids during senescence of rose petals. Plant Physiol 83:1037–1042

    PubMed  CAS  Article  Google Scholar 

  • Fieuw S, Willenbrink J (1987) Sucrose synthase and sucrose phosphate synthase in sugar beet plants (Beta vulgaris L. spp. altissima). J Plant Physiol 131:153–162

    CAS  Google Scholar 

  • Fischer AM, Dubbs WE, Baker RA, Fuller MA, Stephenson LC, Grimes HD (1999) Protein dynamics, activity and cellular localization of soybean lipoxygenases indicate distinct functional roles for individual isoforms. Plant J 19:543–554

    PubMed  CAS  Article  Google Scholar 

  • Fobel M, Lynch DV, Thompson JE (1987) Membrane deterioration in senescing carnation flowers. Plant Physiol 85:204–211

    PubMed  CAS  Google Scholar 

  • Fukuchi-Mizutani M, Savin K, Cornish E, Tanaka Y, Ashikari T, Kusumi T, Murata N (1995) Senescence-induced expression of a homologue of Δ-9-desaturase in rose petals. Plant Mol Biol 29:627–635

    PubMed  CAS  Article  Google Scholar 

  • Fukuchi-Mizutani M, Ishiguro K, Nakayama T, Utrunomiya Y, Yoshikazu T, Kusumi T, Ueda T (2000) Molecular and functional characterization of a rose lipoxygenase cDNA related to flower senescence. Plant Sci 160:129–137

    PubMed  CAS  Article  Google Scholar 

  • Ganelevin R, Zieslin N (2002) Contribution of sepals and gibberellin treatments to growth and development of rose (Rosa hybrida) flowers. Plant Growth Regul 37:225–261

    Article  Google Scholar 

  • Garello G, Menard C, Dan Seraeu B, Le Page-Degivry MT (1995) The influence of light quality on rose flower senescence: involvement of abscisic acid. Plant Growth Regul 8:225–236

    Google Scholar 

  • Giovannoni JJ, Della Penna D, Bennett AB, Fischer R (1992) Polygalactouronase and tomato fruit ripening. Hort Rev 13:67–100

    CAS  Google Scholar 

  • Goldberg R, Morwan C, Jauneau A, Jarvis MC (1996) Methyl esterification, de-esterification and gelation of pectins in the primary cell wall. In: Visser J, Voragen AGJ (eds) Pectins and pectinases. Prog Biotechnol 14:151–172. Elsevier Science, Amsterdam

  • Goldschmidt EE (1986) Maturation, ripening, senescence, and their control: a comparison between fruit and leaves. In: Monselis SP (ed) CRC hand book of fruit set and development. CRC Press, Inc., Boca Raton, ISBNO-8493-3260-S, pp 483–491

  • Goldschmidt EE, Huber SC (1992) Regulation of photosynthesis by end product accumulation in leaves of plants storing starch, sucrose and hexose sugar. Plant Physiol 99:5–19

    Google Scholar 

  • Gomez JM, Hernandez JA, Jimenez A, Del Rio LA, Sevilla F (1999) Differential response of antioxidative enzymes of chloroplast and mitochondria to long term NaCl stress on pea plants. Free Radic Res 31:11–18

    Article  Google Scholar 

  • Griffiths A, Barry C, Alpuche-Salis AG, Grierson D (1999) Ethylene and developmental signals regulate expression of lipoxygenase genes during tomato fruit ripening. J Exp Bot 50:793–798

    CAS  Article  Google Scholar 

  • Grossmann K, Hansen H (2001) Ethylene triggered abscisic acid: a principle in plant growth regulation? Physiol Plant 113:9–14

    CAS  Article  Google Scholar 

  • Guo FQ, Crawford NM (2005) Arabidopsis nitric oxide synthase 1 is targeted to mitochondria and protect against oxidative damage and dark induced senescence. Plant Cell 17:3436–3450

    PubMed  CAS  Article  Google Scholar 

  • Guo FQ, Okainoto M, Crawford NM (2003) Identification of a plant nitric oxide synthase gene involved in hormonal signaling. Science 302:100–103

    PubMed  CAS  Article  Google Scholar 

  • Halevy AH (1987) Assimilate allocation and flower development. In: Atherton JG (ed) Manipulation of flowering. Butter worth, London, pp 363–378

  • Halevy AH, Mayak S (1975) Interrelationship of several phytohormones in the regulation of rose petal senescence. Acta Hort 41:103–116

    Google Scholar 

  • Halvey AH, Mayak S (1981) Senescence and post harvest physiology of cut flowers: Part 2. Hort Rev 3:59–143

    Google Scholar 

  • Halvey AH, Whitehead CS, Kofranek AM (1984) Does pollination induce corolla abscission of cyclamen flowers by promoting ethylene production. Plant Physiol 75:1090–1093

    Google Scholar 

  • Hammond JBW (1982) Changes in amylase activity during rose bud opening. Scientia Hort 16:283–289

    CAS  Article  Google Scholar 

  • Hansen H, Grossmann K (2000) Auxin induced ethylene triggers abscisic acid biosynthesis and growth inhibition. Plant Physiol 124:1437–1448

    PubMed  CAS  Article  Google Scholar 

  • Hassan HM, Fridovich I (1977) Regulation of the synthesis of superoxide dismutase in Escherichia coli. J Biol Chem 292:7667–7672

    Google Scholar 

  • Hayashi H, Chino M (1990) Chemical composition of phloem sap from the uppermost internode of the rice plant. Plant Cell Physiol 31:247–251

    CAS  Google Scholar 

  • Heins RD (1980) Inhibition of ethylene synthesis and senescence in carnation by ethanol. J Am Soc Hort Sci 105:141–144

    CAS  Google Scholar 

  • Hernandez JA, Jimenez A, Mullineaux P, Servilla F (2000) Tolerance of pea to long term salt stress is associated with induction of antioxidant defenses. Plant Cell Environ 23:853–862

    CAS  Article  Google Scholar 

  • Hildebrand DF (1989) Lipoxygenases. Physiol Plant 76:249–253

    CAS  Article  Google Scholar 

  • Ho LC, Nichols R (1977) Translocation of 14C-sucrose in relation to changes in carbohydrate content in rose corollas cut at different stages of development. Ann Bot 41:227–242

    Google Scholar 

  • Hoeberichts FA, Woltering EJ (2003) Multiple mediators of plant programmed cell death: interplay of conserved cell death mechanism and plant-specific regulators. BioEssays 25:47–57

    PubMed  Article  CAS  Google Scholar 

  • Hoeberichts FA, de Jong AJ, Woltering EJ (2005) Apoptotic like cell death marks the early stages of gypsophilla (Gypsophila paniculata) petal senescence. Postharvest Biol Technol 35:229–236

    CAS  Article  Google Scholar 

  • Hossain Z, Mandal AKA, Datta SK, Biswas AK (2006) Decline in ascorbate peroxidase activity—a prerequisite factor for tepal senescence in gladiolus. J Plant Physiol 163:186–194

    PubMed  CAS  Article  Google Scholar 

  • Hubbard N L, Hubber SC, Pharr DM (1989) Sucrose phosphate synthase and acid invertase as determinants of sucrose concentration in developing muskmelon (Cucumis melo L.) fruits. Plant Physiol 91:1527–1534

    PubMed  CAS  Google Scholar 

  • Huber SC, Rufty TW, Kerr PS (1984) Effect of photoperiod on photosynthate partitioning and diurnal rhythms in sucrose phosphate synthase activity in leaves of soybean and tobacco. Plant Physiol 75:1080–1084

    PubMed  CAS  Google Scholar 

  • Hummel SG, Fischer AJ, Martin SM, Schafer FQ, Buettner GR (2006) Nitric oxide as a cellular antioxidant: a little goes a long way. Free Radic Biol Med 4:501–506

    Article  CAS  Google Scholar 

  • Hunter DA, Fessante A, Vernieri P, Reid MS (2004) Role of absicisic acid in perianth senescence of daffodil (Narcissus pseudonarcissus ‘Dutch Master’. Physiol Plant 121:313–321

    PubMed  CAS  Article  Google Scholar 

  • Ichimura K, Kishimoto M, Norikoshi R, Kawabata Y, Yamada K (2005) Soluble carbohydrates and variation in vase life of cut rose cultivars ‘Deliah’ and ‘Sonia’. J Hort Sci Biotech 80:280–286

    CAS  Google Scholar 

  • Itzhaki H, Borochov A, Shimon M (1990) Age related changes in petal membranes from attached and detached rose flower. Plant Physiol 94:1233–1236

    PubMed  CAS  Article  Google Scholar 

  • Jang J, Leon P, Zhou L, Sheen J (1997) Hexokinase as a sugar sensor in higher plants. Plant Cell 9:5–19

    PubMed  CAS  Article  Google Scholar 

  • Jin J, Shan N, Ma N, Bai J, Gao J (2006) Regulation of ascorbate peroxidase at the transcript level is involved in tolerance to postharvest water deficit stress in the cut rose (Rosa hybrida L.) cv. Samantha. Postharvest Biol Technol 40:236–243

    CAS  Article  Google Scholar 

  • Jona R, Accati E, Mayak S (1980) Senescence processes as reflected in change in polysaccharidic cell wall components. Acta Hort 113:153–158

    Google Scholar 

  • Kalaitzis P, Koehler SM, Tucker ML (1995) Cloning of a tomato polygalactouronases expressed in abscission. Plant Mol Biol 28:647–656

    PubMed  CAS  Article  Google Scholar 

  • Kaltaler REL (1971) Respiration and other post harvest physiological phenomenon of ‘Red American Beauty’ roses as affected by various chemicals. Ph.D. thesis, Cornell University, Ithaca

  • Kaltaler REL, Steponkus PL (1974) Uptake and metabolism of sucrose in cut roses. J Am Soc Hort Sci 99:490–493

    CAS  Google Scholar 

  • Kaltaler REL, Steponkus PL (1976) Factors affecting respiration in cut roses. J Am Soc Hort Sci 101:352–354

    CAS  Google Scholar 

  • Kening RE (1985) Gaillardia. In: Halevy AH (ed) Handbook of flowering, vol 5. CRC, Press, Boca Raton, pp 117–126

  • Khayat E, Zieslin N (1989) Translocation of 14C carbohydrate content and activity of the enzymes of sucrose metabolism in rose petals at different night temperatures. Physiol Plant 76:581–585

    CAS  Article  Google Scholar 

  • Kinde H, Zeevart JAD (1997) The five classical plant hormones. Plant Cell 9:1197–1210

    Article  Google Scholar 

  • Kolomiets MA, Long X, Endara ME, Davis KR, Ausubel FM, Peterman TK (1993) An arabiodopsis thaliana lipoxygenase gene can be induced by pathogens, abscisic acid and methyl jasmonate. Plant Physiol 101:441–450

    Article  Google Scholar 

  • Kolomiets MV, Hannapel DJ, Chen H, Tymeson M, Gladon RJ (2001) Lipoxygenase is involved in the control of potato tuber development. Plant Cell 13:613–626

    PubMed  CAS  Article  Google Scholar 

  • Komina O, Zhou Y, Sarath G, Chollet R (2002) In vivo and in vitro phosphorylation of membrane and soluble forms of soybean nodule sucrose synthase. Plant Physiol 129:1664–1673

    PubMed  CAS  Article  Google Scholar 

  • Koornneef M, Van der Veen JM (1980) Induction and analysis of gibberellin-sensitive mutant in Arabiodopsis thaliana (L.) Heynh. Theo App Gene 58:257–263

    Article  Google Scholar 

  • Ku VVV, Wills RBH, Lesham YY (2000) Use of nitric oxide to reduce postharvest water loss from horticultural produce. J Hort Sci Biotech 75:268–270

    CAS  Google Scholar 

  • Kuiper D, Van Reenen HS, Ribot SA (1991) Effect of gibberellic acid on sugar transport in to petals of ‘Madelon’ rose flowers during bud opening. Acta Hort 298:93–95

    Google Scholar 

  • Kumar N, Srivastava GC, Dixit K, Mahajan A, Pal M (2007a) Role of carbohydrates in flower bud opening in rose (Rosa hybrida L.). J Hort Sci Biotech 82:235–242

    CAS  Google Scholar 

  • Kumar N, Srivastava GC, Dixit K (2007b) Role of superoxide dismutase during petal senescence in rose (Rosa hybrida L.). J Hort Sci Biotech 82:673–678

    CAS  Google Scholar 

  • Lamattina L, Beligni GL, Gracia-Mata C, Laxalt AM (2001) US Patent. 6.242, 384B1

  • Laxalt AM, Beligni MV, Lamattina L (1997) Nitric oxide preserves the level of chlorophyll in potato leaves infected by Phytophthora infestens. Eur J Plant Pathol 103:643–651

    CAS  Article  Google Scholar 

  • Legge RL, Thompson JE (1983) Involvement of hydroperoxide and as ACC-derived free radical in the formation of ethylene. Phytochem 22:2161–2166

    CAS  Article  Google Scholar 

  • Lesham YY, Haramaty E (1996) The characterization and contrasting effect of the nitric oxide free radical in vegetable stress and senescence of Pisum sativum L. foliage. J Plant Physiol 148:258–263

    Google Scholar 

  • Lesham YY, Kuiper PJC (1996) Is there a GAS (general adaptation syndrome) response to various types of environmental stresses? Biol Plant 38:1–18

    Article  Google Scholar 

  • Lesham YY, Pinchasov Y (2000) Non-invasive photoacoustic spectroscopic determination of relative endogenous nitric oxide and ethylene content stoichimetry during the ripening of strawberries Fragaria anannasa ‘Dutch’ and avocado Persea Americana ‘Mill’. J Exp Bot 51:1471–1473

    Article  Google Scholar 

  • Leshem YY, Halevy AH, Frenkil C (1986) In: Leshem YY, Hallevy AH, Frenkel C (eds) Free radical and senescence and control of plant senescence. Elsevier, New York, pp 100–116

  • Leuerentz MK, Wagstaff C, Rogers HJ, Stead AD, Chanasul U, Silkowski H, Thomas B, Wei Chert H, Feussner I, Griffiths G (2002) Characterization of a novel lipoxygenase independent senescence mechanism in Alstroemeria peruviana floral tissue. Plant Physiol 130:273–283

    Article  CAS  Google Scholar 

  • Li CR, Zhang XB, Hew CS (2003) Cloning of a sucrose phosphate synthase gene highly expressed in flowers from the tropical epiphytic orchid Oncidium goldiana. J Exp Bot 54:2189–2191

    PubMed  CAS  Article  Google Scholar 

  • Liavonchanka A, Feussner I (2006) Lipoxygenases: occurrence, functions and catalysis. J Plant Physiol 163:348–357

    PubMed  CAS  Article  Google Scholar 

  • Lingle SE, Dunlap JR (1987) Sucrose metabolism in netted muskmelon fruit during development. Plant Physiol 84:386–389

    PubMed  CAS  Google Scholar 

  • Lipton SA, Choi YB, Pan ZH, Lei SZ, Chen HS (1993) A redox based mechanism for the neuro-protective and neuro-destructive effects of nitric oxide and related-compounds. Nature 364:626–632

    PubMed  CAS  Article  Google Scholar 

  • Lohani S, Trivedi PK, Nath P (2004) Changes in activities of cell wall hydrolases during ethylene-induced ripening in banana effect of 1-MCP, ABA and IAA. Postharvest Biol Technol 31:119–126

    CAS  Article  Google Scholar 

  • Ma N, Cai L, Lu WJ, Tan H, Gao JP (2005) Ethylene influences flower opening of cut roses (Rosa hybrida L.) by regulating the genes for ethylene biosynthetic enzymes. Sci Chin (C series) 48:434–444

    CAS  Article  Google Scholar 

  • Mac Rae E, Quick WP, Benker C, Stitt M (1992) Carbohydrate metabolism during post harvest ripening in kiwifruit. Planta 188:314–323

    CAS  Article  Google Scholar 

  • Marangoni AG, Palma T, Stanley DW (1996) Membrane effects on post harvest physiology. Postharvest Biol Technol 7:193–217

    Article  Google Scholar 

  • Marousky FJ (1969) Vascular blockage, water absorption, stomatal opening and respiration of cut Better times roses treated with 8-hydroxyquinoline citrate and sucrose. J Am Soc Hort Sci 94:223–226

    CAS  Google Scholar 

  • Martin C, Gerats T (1993) Control of pigment biosynthesis genes during petal development. Plant Cell 5:1253–1264

    PubMed  CAS  Article  Google Scholar 

  • Mayak S, Halevy AH (1972) Interrelationship of ethylene and abscisic acid in the control of rose petal senescence. Plant Physiol 50:341–346

    PubMed  CAS  Google Scholar 

  • Mayak S, Legge RL, Thompson JE (1983) Superoxide radical production by microsomal membranes from senescing carnation flowers: an effect on membrane fluidity. Phytochem 22:1375–1380

    CAS  Article  Google Scholar 

  • Melan MA, Dong X, Endara ME, Davis KR, Ausubel FM, Peterman TK (1993) An Arabiodopsis thaliana lipoxygenase gene can be induced by pathogens, abscisic acid and methyl jasmonate. Plant Physiol 101:441–450

    PubMed  CAS  Article  Google Scholar 

  • Mendicino J (1960) Sucrose phosphate synthesis in wheat germ and green leaves. J Biol Chem 235:3347–3352

    PubMed  CAS  Google Scholar 

  • Mol J, Jenkins G, Schafer E, Weiss D (1996) Signal perception, transduction and gene expression involved in anthocyanin biosynthesis. Cri Rev Plant Sci 15:525–557

    CAS  Article  Google Scholar 

  • Moline HE, La Motte CE, Gochnawr C, Mc Namer A (1972) Further comparative studies on pectin esterase in relation to leaf and flower abscission. Plant Physiol 50:655–659

    PubMed  CAS  Google Scholar 

  • Monteiro JA, Nell TA, Barrett JE (2001) Post-production of potted miniature rose: flower respiration and single flower longevity. J Am Soc Hort Sci 126:134–139

    Google Scholar 

  • Mor Y, Johnson F, Faragher JD (1989) Preserving the quality of cold-stored rose flowers with ethylene antagonists. Hort Sci 24:640–641

    CAS  Google Scholar 

  • Muller R, Stummann BM, Andersen AS, Serek M (1999a) Involvement of ABA in postharvest life of miniature potted roses. Plant Growth Regul 29:143–150

    CAS  Article  Google Scholar 

  • Muller R, Andersen AS, Serek M (1999b) Differences in display life of miniature potted roses. Scientia Hort 76:59–71

    Article  Google Scholar 

  • Muller R, Lind-Iversen S, Stumann BM, Serek M (2000a) Expression of genes for ethylene biosynthetic enzymes and an ethylene receptor in senescing flowers of miniature roses. J Hort Sci Biotech 75:12–18

    CAS  Google Scholar 

  • Muller R, Stumann BM, Serek M (2000b) Characterization of an ethylene receptor family with differential expression in rose (Rosa hybrida L.) flowers. Plant Cell Rep 19:1232–1239

    CAS  Article  Google Scholar 

  • Muller R, Owen CA, Xue ZT, Welander M, Stumann BM (2002) Characterization of two CTR-like protein kinase in Rosa hybrida and their expression during flower senescence and in response to ethylene. J Exp Bot 53:1223–1225

    PubMed  CAS  Article  Google Scholar 

  • Muller R, Owen CA, Xue ZT, Welander M, Stumann BM (2003) The transcription factor EIN 3 is constitutively expressed in miniature roses with differences in postharvest life. J Hort Sci Biotech 78:10–14

    Google Scholar 

  • Mur L (1995) Thesis, Vrije University, Amsterdam

  • Neill SJ, Desikan R, Hancock JT (2003) Nitric oxide signaling in plants. New Phytol 159:11–35

    CAS  Article  Google Scholar 

  • Nichols R (1973) Senescence of the cut carnation flower: respiration and sugar status. J Hort Sci 48:111–121

    CAS  Google Scholar 

  • Nielson k, Deroles SC, markham KR, Bradeley JM, Podivinsky E, Hanson D (2002) Antisense flavonol synthase alters co-pigmentation and flower color in lisianthus. Mol Breed 9:217–229

    Article  Google Scholar 

  • Nishikawa F, Kato M, Wang R, Hyodo H, Ikoma Y, Sugiura M, Yano M (2003) Two ascorbate peroxidases from broccoli: identification, expression and characterization of their recombinant proteins. Postharvest Biol Technol 27:147–196

    CAS  Article  Google Scholar 

  • Nishikawa F, Iwama T, Kato M, Hyodo H, Ikoma Y, Yano M (2005) Effects of sugars on ethylene synthesis and responsiveness in harvested broccoli florets. Postharvest Biol Technol 36:157–165

    CAS  Article  Google Scholar 

  • Noda N, Kanno Y, Kato N, Kazuma K, Suzuki M (2004) Regulation of gene expression involved in flavonol and anthocyanin biosynthesis during petal development in lisianthus (Eustoma Grandi). Physiol Plant 122:305–313

    CAS  Article  Google Scholar 

  • O’Donoghue EM, Somerfield SD, Heyes JA (2002) Vase solution containing sucrose result in changes to cell walls of Sandersonia (Sandersonia aurantiaca) flowers. Postharvest Biol Technol 26:285–294

    CAS  Article  Google Scholar 

  • Ohe M, Rapolu M, Mieda T, Miyagawa Y, Yabuta Y, Yoshimura K, Shigloka S (2005) Decline in leaf photoxidative-stress tolerance with age in tobacco. Plant Sci 168:1487–1493

    CAS  Article  Google Scholar 

  • Ohyama A, Ito H, Sato T, Nishimura S, Imai T, Hirai M (1995) Suppression of acidic invertase activity by antisense RNA modifies the sugar composition of tomato fruit. Plant Cell Physiol 36:369–376

    CAS  Google Scholar 

  • Page-Degivry MThLe, Orlandini M, Garello G, Barthe Ph, Gudin S (1991) Regulation of ABA levels in senescing petals of rose flowers. J Plant Growth Regul 10:67–72

    Article  Google Scholar 

  • Panavas T, Rubinstein B (1998) Oxidative events during programmed cell death of daylily petals. Plant Sci 133:125–138

    CAS  Article  Google Scholar 

  • Panavas T, Walker EL, Rubinstein B (1998a) Possible involvement of abscisic acid in senescence of daylily petals. J Exp Bot 49:1987–1997

    CAS  Article  Google Scholar 

  • Panavas T, Reid PD, Rubinstein B (1998b) Programmed cell death of daylily petals: activity of wall based enzymes and effects of heat shock. Plant Physiol Biochem 36:379–388

    CAS  Article  Google Scholar 

  • Pastori D, Padalino D, Simone L, Valenti D, Di-Fanzo N, Passerella S (2000) Inhibition by α-tocopherol and l-ascorbate of linoleate hydroperoxidation and β-carotene bleaching activities in durum wheat semolina. J Cereal Sci 31:41–54

    Article  CAS  Google Scholar 

  • Podd LA, Van Staden J (1998) The role of ethanol and acetaldehyde in flower senescence and fruit ripening-a review. Plant Growth Regul 26:183–189

    CAS  Article  Google Scholar 

  • Pompodakis NE, Terry LA, Joyce DC, Lydakis DE, Papadimitriiou MD (2005) Effect of seasonal variation and storage temperature on leaf chlorophyll fluorescence and vase life of cut roses. Postharvest Biol Technol 36:1–8

    CAS  Article  Google Scholar 

  • Rattanawisalanon C, Kesta S, Van Doorn WG (2003) Effect of amino oxyacetic acid and sugars on the vase life of Dendrobium flowers. Postharvest Biol Technol 29:93–100

    CAS  Article  Google Scholar 

  • Redgevell RJ, Fischer M, Kendal E, Mac Rae EA (1997) Galactose loss and fruit ripening: high molecular weight arabino-galactans in the pectic polysaccharides of fruit cell walls. Planta 203:174–181

    Article  Google Scholar 

  • Rout-Mayer MA, Bureau JM, Lauriere C (1992) Identification and characterization of lipoxygenase isoform in senescing carnation petals. Plant Physiol 98:971–978

    Article  Google Scholar 

  • Roy P, Roy SP, Mitra A, Kulkarni AP (1994) Superoxide generation by lipoxygenase in the presence of NADH and NADPH. Biochem Biophy Acta 1214:171–179

    CAS  Google Scholar 

  • Rufty TW, Huber SC (1983) Changes in starch formation and activities of sucrose phosphate synthase and cytoplasmic fructose −1, 6 bisphosphate in response to source-sink alterations. Plant Physiol 72:474–480

    PubMed  CAS  Google Scholar 

  • Sabehat A, Zieslin N (1994) GA3 effects on post-harvest alterations in cell membranes of rose (Rosa × Hybrida) petals. J Plant Physiol 144:513–517

    CAS  Google Scholar 

  • Sablowski WM, Meyerowitz EM (1998) A homology of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETLA3/PISILLATA. Cell 92:93–103

    PubMed  CAS  Article  Google Scholar 

  • Sajjaanantakul T, Pitifer LA (1991) Pectin esterase. In: Walter RH (ed) The chemistry and technology of pectins. Academic Press, San Diego, pp 135–165

  • Saks Y, Van Staden J, Smith MT (1992) Effect of gibberellic acid on carnation flower senescence: evidence that the delay of carnation flower senescence by gibberellic acid depends on the stage of flower development. Plant Growth Regul 11:45–51

    CAS  Article  Google Scholar 

  • Saravitz DM, Siedow JN (1995) The Lipoxygenase isoenzymes in soybean leaves: changes during leaf development, after wounding and following reproductive sink removal. Plant Physiol 107:535–543

    PubMed  CAS  Google Scholar 

  • Serek M, Tamari G, Sisler EC, Borachov A (1995) Inhibition of ethylene-induced cellular senescence symptoms by 1-MCP, a new inhibitor of ethylene action. Physiol Plant 94:229–232

    CAS  Article  Google Scholar 

  • Seymour GB, Gross KC (1996) Cell wall disassembly and fruit softening. Postharvest News Info 7:45N–52N

    Google Scholar 

  • Shaked-Sachray L, Weiss D, Reuveni M, Nissim-Levi A, Oren-Shamir M (2002) Increased anthocyanin accumulatrion in aster flowers at elevated temperature due to magnesium treatment. Physiol Plant 114:559–565

    PubMed  CAS  Article  Google Scholar 

  • Siedow JN (1991) Plant Lipoxygenase: structure and function. Annu Rev Plant Physiol Plant Mol Biol 42:145–188

    CAS  Article  Google Scholar 

  • Siegelman HW (1952) The respiration of rose and gardenia flowers. Proc Am Soc Hort Sci 59:496–500

    CAS  Google Scholar 

  • Siegelman HW, Chow CT, Biale JB (1958) Respiration of developing rose petals. Plant Physiol 33:403–409

    PubMed  CAS  Article  Google Scholar 

  • Smart CM (1994) Gene expression during leaf senescence. New Phytol 126:419–448

    CAS  Article  Google Scholar 

  • Sturm A (1999) Invertases. Primary structures, functions and roles in plant development and sucrose partitioning. Plant Physiol 121:1–7

    PubMed  CAS  Article  Google Scholar 

  • Sylvestre I, Droillard MJ, Bureau JM, Paulin A (1989) Effects of ethylene rise on the peroxidation of membrane lipids during the senescence of cut carnations. Plant Physiol Biochem 27:407–413

    CAS  Google Scholar 

  • Tan H, Liu X, Ma N, Xue J, Lu W, Bai J, Gao J (2006) Ethylene—influnced flower opening and expression of genes encoding ETRs, and EIN3s in two cut rose cultivars. Postharvest Biol Technol 40:97–105

    CAS  Article  Google Scholar 

  • Tanse K, Shiratake K, Mori H, Yamaki (2002) Changes in the phosphorylation state of sucrose synthase during development of Japanese pear fruit. Physiol Plant 114:21–26

    Article  Google Scholar 

  • Thompson JE, Froese CD, Madey E, Smith MD, Hong YW (1998) Lipid metabolism during plant senescence. Progress Lipid Res 37:119–141

    CAS  Article  Google Scholar 

  • Tucker GA, Schindler CB, Roberts JA (1984) Flower abscission in mutant tomato plants. Planta 160:164–167

    CAS  Article  Google Scholar 

  • Urban L, Pyrrha P, Perez G (1994) Effect of season on transpiration of ‘Sonia’ rose leaves grown in rockwool at two different level of electrical conductivity. Agronomy 2:103–111

    Article  Google Scholar 

  • Valenzuela-Vazquez M, Picchioni GA, Murray LW, Mac Kay WA (2007) Benficial role of 1-Methyl cyclopropene for cut Lupinus havardii recemes exposed to ethephon. Hort Sci 42:113–119

    CAS  Google Scholar 

  • Van der Kop DAM, Ruys G, Dees D, Van der Schoot C, De Beer AD, Van doorn WG (2003) Expression of defender against apoptotic death (DAD1) in Iris and Dianthus petals. Physiol Plant 117:256–263

    Article  Google Scholar 

  • Van Doorn WG (1990) Aspiration of air at the cut surface of rose stems and its effect on the uptake of water. J Plant Physiol 137:160–164

    Google Scholar 

  • Van Doorn WG (2001) Role of soluble carbohydrates in flower senescence: a survey. Acta Hort 543:179–183

    Google Scholar 

  • Van Doorn WG (2004) Is petal senescence is due to sugar starvation. Plant Physiol 134:35–42

    PubMed  Article  CAS  Google Scholar 

  • Van Doorn WG, Schroder C (1995) The abscission of rose petals. Ann Bot 76:539–544

    Article  Google Scholar 

  • Van Doorn WG, Stead AD (1997) Abscission of flower and floral parts. J Exp Bot 48:821–837

    Article  Google Scholar 

  • Van Doorn WG, Schurer K, De Witte Y (1989) Role of endogenous bacteria in vascular blockage of cut rose flowers. J Plant Physiol 134:371–381

    Google Scholar 

  • Van Doorn WG, Groenewegen G, Van de Pol PA, Berkholst CEM (1991) Effects of carbohydrate and water status on flower opening of cut Madelon roses. Postharvest BiolTechnol 1:47–57

    Article  Google Scholar 

  • Van Doorn WG, Abadie P, Belede PJM (2002) Alkylethoxylate surfactants for rehydration of roses and bouvardia flowers. Postharvest Biol Technol 24:327–333

    Article  Google Scholar 

  • Van Meeteren U, Van Gelder H (1999) Effect of time since harvest and handling condition on rehydration ability of cut chrysanthemum flowers. Postharvest BiolTechnol 16:169–177

    Article  Google Scholar 

  • Verlinden S, Garcia JJV (2004) Sucrose loading decreases ethylene responsiveness in carnation (Dianthus caryophyllus cv. White Sim) petals. Postharvest BiolTechnol 31:305–312

    CAS  Article  Google Scholar 

  • Vick BA, Zimmerman DC (1987) Oxidative system for modification of fatty acids: the lipoxygenase pathway. In: Stumpf PK, Conn EE (eds) The biochemistry of plants, vol 9. Academic Press, Orlando, pp 53–90

  • Wagstaff C, Malcolm P, Rafiq A, Leverentz M, Griffiths G, Thomas B, Stead A, Rogers H 2003 Programmed cell death (PCD) processes begin extremely early in Alostromeria petal senescence. New Phytol 160:49–59

    CAS  Article  Google Scholar 

  • Waithaka K, Dodge LL, Reid MS (2001) Carbohydrate traffic during opening of gladiolus florets. JHortSci Biotech 76:20–24

    Google Scholar 

  • Weinstein LH (1957) Senescence of roses: I. Chemical changes associated with senescence of Cut Better Times roses. Contr Boyce Thompson Inst 19:33–48

    CAS  Google Scholar 

  • Weiss D (2000) Regulation of flower pigmentation and growth: multiple signaling pathways control anthocyanin synthesis in expanding petals. Physiol Plant 110:152–157

    CAS  Article  Google Scholar 

  • Whitehead CS, Vasiljevic D (1993) Role of short chain saturated fatty acids in the control of ethylene sensitivity in senescing carnation flowers. Physiol Plant 8:243–250

    Article  Google Scholar 

  • Wie Z, Zhang H, Gu ZP, Zhang JJ (2003) Cause of senescence of nine sorts of flowers. Acta Bot Sinica 33:429–436

    Google Scholar 

  • Wiemken-Gehrig V, Wiemken A, Matile P (1974) Mobilization von zellwandstoffen in der welkenden Blute Von Ipomea tricolor Cav. Planta 115:297–307

    CAS  Article  Google Scholar 

  • Williams M, Salas JJ, Sanchez J, Harwood JL (2000) Lipoxygenase pathway in olive callus culture (Olea europaea). Phytochem 53:13–19

    CAS  Article  Google Scholar 

  • Wills RBH, Ku VVV, Leshem YY (2000) Fumigation with nitric oxide to extend the postharvest life of strawberries. Postharvest Biol Technol 18:75–79

    CAS  Article  Google Scholar 

  • Woltering EJ, Van Doorn WG (1988) Role of ethylene in senescence of petals. Morphological and taxonomical relationship. J Exp Bot 39:1605–1616

    CAS  Article  Google Scholar 

  • Woodson WR, Lawton KA (1988) Ethylene induced gene expression in carnation petals. Relationship to autocatalytic ethylene production and senescence. Plant Physiol 87:498–503

    PubMed  CAS  Article  Google Scholar 

  • Worrell AC, Bruneau JM, Summerfelt K, Boersig M, Vollker TA (1991) Expression of a maize sucrose phosphate synthase in tomatoes alters leaf carbohydrate partitioning. Plant Cell 3:1121–1130

    PubMed  CAS  Article  Google Scholar 

  • Wu MJ, Zacarias L, Mikal E, Saltveit ME, Reid MS (1992) Alcohol and carnation senescence. HortSci 27:136–138

    CAS  Google Scholar 

  • Yamada T, Takatsu Y, Manbe T, Kasumi M, Marubashi W (2003) Suppresive effect of trehalose on apoptotic cell death leading to petal senescence in ethylene-insensitive flowers of gladiolus. Plant Sci 164:213–221

    CAS  Article  Google Scholar 

  • Yamada T, Takatsu Y, Kasumi M, Marubashi W, Ichimura K (2004) A homolog of the defender against apoptotic death gene (DAD1) in senescing gladiolus petals in down-regulated prior to the onset of programmed cell death. J Plant Physiol 161:1281–1283

    PubMed  CAS  Article  Google Scholar 

  • Ye Z, Rodriguez R, Tran A, Hoang H, de los Santos D, Brown S, Vellanoweth L (2000) The developmental transition to flowering repress ascorbate peroxidase activity and induces enzymatic lipid peroxidation in leaf tissue in Arabiodopsis thaliana. Plant Sci 58:115–127

    Article  Google Scholar 

  • Yoshimura K, Yabuta Y, Ishikawa T, Shigeoka S (2000) Expression of spinach ascorbate peroxidase isoenzymes in response to oxidative stresses. Plant Physiol 123:223–323

    PubMed  CAS  Article  Google Scholar 

  • Zhang Y, Guo W, Chen S, Han L, Li Z (2007) The role of N-laurayl ethanolamine in the regulation of senescence of cut carnations (Dianthus carophyllus). J Plant physiol 164:993–1001

    PubMed  CAS  Article  Google Scholar 

  • Zhao M, Zhao X, Wu Y, Zhang L (2007) Enhanced sensitivity to oxidative stress in an Arabidopsis nitric oxide synthase mutant. J Plant Physiol 164:737–745

    PubMed  CAS  Article  Google Scholar 

Download references

Acknowledgements

Naveen Kumar is thankful to IARI and CSIR, New Delhi for providing Senior Research Fellowship. Authors thank anonymous reviewers for helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveen Kumar.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kumar, N., Srivastava, G.C. & Dixit, K. Flower bud opening and senescence in roses (Rosa hybrida L.). Plant Growth Regul 55, 81 (2008). https://doi.org/10.1007/s10725-008-9263-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10725-008-9263-x

Keywords

  • Abscisic acid
  • Ascorbate peroxidase
  • Catalase
  • Ethylene
  • Gibberellin
  • Glutathione reductase
  • Hydrogen peroxide
  • Hydroxyl radical
  • Lipoxygenase
  • Pectin methyl esterase
  • Polygalactouronase
  • Peroxidase
  • Relative water content