Skip to main content
Log in

Azospirillum brasilense Sp 245 produces ABA in chemically-defined culture medium and increases ABA content in arabidopsis plants

  • Original Paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Azospirillum sp. are plant growth promoting bacteria (PGPB) that increase grain yield in cereals and other species via growth promotion and/or stress alleviation. The PGPB beneficial effects have been partially attributed to bacterial production of plant hormones, especially growth promoters like auxins, gibberellins and cytokinins. This paper reports the characterization of the stress-like plant hormone abscisic acid (ABA) by GC-EIMS in cultures of A. brasilense Sp 245 after 120 h of incubation in chemically-defined media, and chemically-defined media with moderate stress (100 mM NaCl). Chemical characterization of ABA was done by gas chromatography-electron impact mass spectrometry (GC-EIMS) and quantification by selected ion monitoring (SIM) with a stable isotope of the hormone as internal standard in the media. A. brasilense cultures produced higher amounts of ABA per ml of culture when NaCl was incorporated in the culture medium. Inoculation of Arabidopsis thaliana with A. brasilense Sp 245 enhanced two-fold the plant’s ABA content. These results contribute to explain, at least to some extent, the beneficial effects of Azospirillum sp. previously found in inoculated plants placed under adverse environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

CFU:

Colony forming units

GA(s):

Gibberellin(s) as a class

GC-EIMS:

Capillary gas chromatography-electron impact mass spectrometry

LB:

Luria Broth

Me:

Methyl ester

OD:

Optical density

PGPB:

Plant growth promoting bacteria

SIM:

Selected ion monitoring

References

  • Bashan Y, Holguin G (1997) Azospirillum-plant relationships: environmental and physiological advances (1990–1996). Can J Microbiol 43:103–121

    CAS  Google Scholar 

  • Bertrand H, Plassard C, Pinochet X, Touraine B, Normand P, Cleyet-Marel JC (2000) Stimulation of ionic transport system in Brassica napus by a plant growth-promoting rhizobacterium (Achromobacter sp.). Can J Microbiol 46:229–236

    Article  PubMed  CAS  Google Scholar 

  • Bloemberg GV, Lugtenberg BJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4:343–350

    Article  PubMed  CAS  Google Scholar 

  • Bottini R, Fulchieri M, Pearce D, Pharis RP (1989) Identification of gibberellins A1, A3 and iso-A3 in cultures of Azospirillum lipoferum. Plant Physiol 90:45–47

    Article  PubMed  CAS  Google Scholar 

  • Bottini R, Cassán F, Piccoli P (2004). Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl Microbiol Biotech 65:497–503

    Article  CAS  Google Scholar 

  • Candau R, Avalos J, Cerdá-Olmedo E (1992) Regulation of gibberellin biosynthesis in Gibberella fujikuroi. Plant Physiol 100:1184–1188

    PubMed  CAS  Google Scholar 

  • Cassán F, Bottini R, Schneider G, Piccoli P (2001a) Azospirillum brasilense and Azospirillum lipoferum hydrolyze conjugates of GA20 and metabolize the resultant aglycone to GA1 in seedlings of rice dwarf mutants. Plant Physiol 125:2053–2058

    Article  PubMed  Google Scholar 

  • Cassán F, Lucangeli C, Bottini R, Piccoli P (2001b) Azospirillum sp. Metabolize [17,17-2H2] Gibberellin A20 to [17,17-2H2] Gibberellin A1 in vivo in dy rice mutant seedlings. Plant Cell Physiol 42:763–767

    Article  PubMed  Google Scholar 

  • Cheng WH, Endo A, Zhou L, Penney J, Chen HC, Arroyo A, León P, Nambara E, Asami T, Seo M, Koshiba T, Sheen J (2002) A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell 14:2723–2743

    Article  PubMed  CAS  Google Scholar 

  • Cohen A, Travaglia C, Reinoso H, Piccoli P, Bottini R (2001) Azospirillum inoculation and inhibition of gibberellins and ABA synthesis in maize seedlings under drought. Proc Plant Growth Regul Soc Am 28:88-93

    Google Scholar 

  • Creus C, Sueldo R, Barassi C (1997) Shoot growth and water status in Azospirillum-inoculated wheat seedlings grown under osmotic and salt stresses. Plant Physiol Biochem 35:939–944

    CAS  Google Scholar 

  • Crozier AP, Arruda P, Jasmim JM, Monteiro AM, Sandberg G (1988) Analysis of indole-3-acetic acid and related indoles in culture medium from Azospirillum lipoferum and Azospirillum brasilense. Appl Environ Microbiol 54:2833–2837

    PubMed  CAS  Google Scholar 

  • El-Khawash H, Adachi K (1999) Identification and quantification of auxins in culture media of Azospirillum and Klebsiella and their effect on rice roots. Biol Fert Soils 28:377–381

    Article  Google Scholar 

  • Fulchieri M, Lucangeli C, Bottini R (1993) Inoculation with Azospirillum lipoferum affects growth and gibberellins status of corn seedling roots. Plant Cell Physiol 34:1305–1309

    CAS  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Granier Ch, Tardieu F (1999) Water deficit and spatial pattern of leaf development. Variability in responses can be stimulated using a simple model of leaf development Plant Physiol 119:609–619

    Article  Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol Biochem 37: 395–412

    Article  CAS  Google Scholar 

  • Hsiao TC, Acevedo E, Henderson DW (1970) Maize leaf elongation: continuous measurement dependence on water status. Science 168:590–591

    Article  PubMed  CAS  Google Scholar 

  • Janzen R, Rood S, Dormar J, McGill W (1992) Azospirillum brasilense produces gibberellins in pure culture and chemically-medium and in co-culture on straw. Soil Biol Biochem 24:1061–1064

    Article  CAS  Google Scholar 

  • Kloepper JW Leong J, Teintze MN, Schroth MN (1980) Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286:885–886

    Article  Google Scholar 

  • Kloepper JW, Zablotowiez RM, Tipping EM, Lifshitz R (1991) Inorganic plant growth promotion mediated by bacterial rhizosphere colonizer. In: Keister KL, Gregan PB (eds) The rhizosphere and plant growth. Kluwer, Dordrecht, pp 315–326

  • Klopper JW (2003) A review of the mechanism for plant growth promotion by PGPR. In: Proc. 6th International PGPR Workshop. Calcuta, India, pp 81–92

  • Litchtenthaler HK (1999) The 1-deoxy-d-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 50:47–65

    Article  Google Scholar 

  • Lucangeli C, Bottini R (1996) Reversion of dwarfism in dwarf-1 maize (Zea mays L.) and dwarf-x rice (Oryza sativa L.) mutants by endophytic Azospirillum spp. Biocell 20:223–228

    Google Scholar 

  • Lucangeli C, Bottini R (1997) Effects of Azospirillum spp. on endogenous gibberellin content and growth of maize (Zea mays L.) treated with uniconazole. Symbiosis 23:63–72

    CAS  Google Scholar 

  • Martínez-Morales LJ, Soto-Urzúa L, Baca BE, Sánchez-Ahédo JA (2003) Indole-3-butyric acid (IBA) production in culture medium by wild strain Azospirillum brasilense. FEMS Microbiol Lett 228:167–173

    Article  PubMed  CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick B (2004) Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci 166:525–530

    Article  CAS  Google Scholar 

  • Mohr P, Cahill D (2003) Abscisic acid influences the susceptibility of Arabidopsis thaliana to Pseudomonas syringae pv. tomato and Peronospora parasitica Funct Plant Biol 30:461–469

    Article  CAS  Google Scholar 

  • Okon Y (1994) Azospirillum/plant associations. CRC Press, Boca Raton, p 347

    Google Scholar 

  • Okon Y, Hadar Y (1987) Microbial inoculants as crop yield enhancers. CRC Crit Rev Biotechnol 6:61–79

    Article  Google Scholar 

  • Patriquin DG, Döbereiner J, Jain DK (1983) Sites and processes of association between diazotrophs and grasses. Can J Microbiol 29:900–915

    Article  Google Scholar 

  • Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42:07–220

    Article  Google Scholar 

  • Peña-Cortés H, Sánchez-Serrano JJ, Mertens R, Willmitzer L, Prat S (1989) Abscisic acid is involved in the wound-induced expression of the proteinase inhibitor II gene in potato and tomato. Proc Natl Acad Sci USA 86:9851–9855

    Article  PubMed  Google Scholar 

  • Persello-Cartieaux F, Nussaume L, Robaglia C (2003) Tales from the underground: molecular plant-rhizobacteria interactions. Plant Cell Environ 26:189–199

    Article  CAS  Google Scholar 

  • Piccoli P, Bottini R (1994) Metabolism of 17,17-[2H2]gibberellin A20 to 17,17-[2H2]gibberellin A1 by Azospirillum lipoferum cultures. AgriScientia XI:13–15

    Google Scholar 

  • Piccoli P, Masciarelli O, Bottini R (1996) Metabolism of 17,17[2H2]-Gibberellins A4, A9, and A20 by Azospirillum lipoferum in chemically-defined culture medium. Symbiosis 21:167–178

    Google Scholar 

  • Piccoli P, Lucangeli D, Schneider G, Bottini R (1997) Hydrolysis of [17,17-2H2]Gibberellin A20-Glucoside and [17,17-2H2]Gibberellin A20-glucosyl ester by Azospirillum lipoferum cultured in a nitrogen-free biotin-based chemically-defined medium. Plant Growth Regul 23:179–182

    Article  CAS  Google Scholar 

  • Piccoli P, Masciarelli O, Bottini R (1999) Gibberellin production by Azospirillum lipoferum cultured in chemically defined medium as affected by water status and oxygen availability. Symbiosis 27: 135–146

    CAS  Google Scholar 

  • Robertson AJ, Ishikawa M, Gusta LV, MacKenzie SL (1994) Abscisic Acid-induced heat tolerance in Bromus inermis leyss cell-suspension cultures. Heat-stable, abscisic acid-responsive polypeptides in combination with sucrose confer enhanced thermostability Plant Physiol 105:181–190

    Article  PubMed  CAS  Google Scholar 

  • Sansberro P, Mroginski L, Bottini R (2004) Abscisic acid promotes growth of Ilex paraguariensis plants by alleviating diurnal water stress. Plant Growth Regul 42:105–111

    Article  CAS  Google Scholar 

  • Sarig S, Blum A, Okon Y (1988) Improvement of the water status and yield of field-grown grain sorghum (Sorghum bicolor) by inoculation with Azospirillum brasilense. J Agric Sci Camb 110:271–277

    Google Scholar 

  • Schwartz SH, Qin X, Zeevaart JAD (2003) Elucidation of the indirect pathway of abscisic acid biosynthesis by mutants, genes, and enzymes. Plant Physiol 131:1591–1601

    Article  PubMed  CAS  Google Scholar 

  • Sharp RE (2002) Interaction with ethylene: changing views on the role of ABA in root and shoot growth responses to water stress. Plant Cell Environ 25:211–222

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular response to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3:217–223

    PubMed  CAS  Google Scholar 

  • Siewers V, Kokkelink L, Smedsgaard J, Tudzynski P (2006) Identification of an abscisic acid gene cluster in the grey mold Botrytis cinerea. Appl Environm Microbiol 72:4619–462

    Article  CAS  Google Scholar 

  • Timmusk S, Nicander B, Granhall U, Tillberg E (1999) Cytokinin production by Paenibacillus polymyxa. Soil Biol Biochem 31:1847–1852

    Article  CAS  Google Scholar 

  • Zeevaart JAD, Creelman JA (1988) Metabolism and physiology of abscisic acid. Annu Rev Plant Physiol Plant Mol Biol 39:439–473

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported with grants from CONICET and Secyt-UNCu to R.B and P.P.R. Bottini and P. Piccoli are fellows of CONICET. A. Cohen is recipient of a post-doc scholarship from CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia N. Piccoli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cohen, A.C., Bottini, R. & Piccoli, P.N. Azospirillum brasilense Sp 245 produces ABA in chemically-defined culture medium and increases ABA content in arabidopsis plants. Plant Growth Regul 54, 97–103 (2008). https://doi.org/10.1007/s10725-007-9232-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-007-9232-9

Keywords

Navigation