Skip to main content
Log in

Interaction of red to far red light ratio and ethylene in regulating stem elongation of Helianthus annuus

  • Original Paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Sunflower (Helianthus annuus L.) stems showed increased elongation under two types of vegetative shade: canopy shade (low red to far red [R/FR] ratio) and neighbouring proximity shade (FR enrichment). Hypocotyls also elongated more under narrow-band FR light than under narrow-band R light. Ethylene levels were determined in actively elongating 7-day-old hypocotyls and 17-day-old internodes under three R/FR ratios. Ethylene levels were lower in both sunflower hypocotyls and internodes when the R/FR ratio was reduced. Both FR enrichment of normal R/FR ratio and narrow-band FR light with very low light irradiance resulted in reduction in ethylene levels in 7-day-old hypocotyls. Further, in application experiments, sunflower stems grown under low R/FR ratio were more sensitive to ethephon and less sensitive to aminoethoxyvinylglycine (AVG) than stems grown under high R/FR ratio. Low R/FR ratio appears to initiate reduction in ethylene levels in sunflower seedlings, allowing maximum stem elongation. These results, and findings of other authors, suggest that various plant species may have developed different ways of regulating stem elongation and ethylene levels in response to low R/FR ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abeles FB, Morgan PW, Saltveit ME Jr (1992) Ethylene in plant biology, 2nd edn. Academic Press, New York

    Google Scholar 

  • Ballare CL (1999) Keeping up with the neighbours: phytochrome sensing and other signalling mechanisms. Trends Plant Sci 4:97–102

    Article  PubMed  Google Scholar 

  • Ballare CL, Scopel AL, Sanchez RA (1990) Far-red radiation reflected from adjacent leaves: an early signal of competition in plant canopies. Science 247:329–331

    Article  PubMed  Google Scholar 

  • Finlayson SA, Jung IJ, Mullet JE, Morgan PW (1999) The mechanism of rhythmic ethylene production in Sorghum. The role of phytochrome B and simulated shading. Plant Physiol 119:1083–1089

    Article  PubMed  CAS  Google Scholar 

  • Finlayson SA, Lee IJ, Morgan PW (1998) Phytochrome B and the regulation of circadian ethylene production in sorghum. Plant Physiol 116:17–25

    Article  CAS  Google Scholar 

  • Franklin KA, Whitelam GC (2005) Phytochromes and shade-avoidance responses in plants. Ann Bot (Lond) 96:169–175

    Article  CAS  Google Scholar 

  • Goeschl JD, Pratt HK, Bonner BA (1967) An effect of light on the production of ethylene and the growth of the plumular portion of etiolated pea seedlings. Plant Physiol 42:1077–1080

    PubMed  CAS  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Cal Agr Exp StatCirc 347:1–32

    Google Scholar 

  • Imaseki H, Pjon CJ, Furuya M (1971) Phytochrome action in Oryza sativa L.IV. Red and far-red reversible effect on the production of ethylene in excised coleoptiles. Plant Physiol 48:241–244

    PubMed  CAS  Google Scholar 

  • Jackson MB (1985) Ethylene and responses of plants to soil waterlogging and submergence. Annu Rev Plant Physiol 36:145–174

    Article  CAS  Google Scholar 

  • Kurepin LV, Pharis RP, Reid DM, Chinnappa CC (2006a) Involvement of gibberellins in the stem elongation of sun and shade ecotypes of Stellaria longipes that is induced by low light irradiance. Plant Cell Environ 29:1319–1328

    Article  CAS  Google Scholar 

  • Kurepin LV, Walton LJ, Reid DM, Pharis RP, Chinnappa CC (2006b) Growth and ethylene evolution by shade and sun ecotypes of Stellaria longipes in response to varied light quality and irradiance. Plant Cell Environ 29:647–652

    Article  CAS  Google Scholar 

  • Lee SH, Reid DM (1997) The role of endogenous ethylene in the expansion of Helianthus annuus leaves. Can J Bot 78:501–508

    Google Scholar 

  • Michalczuk B, Rudnicki RM (1993) The effect of monochromatic red light on ethylene production in leaves of Impatiens balsamina L. and other species. Plant Growth Regul 13:125–131

    Article  CAS  Google Scholar 

  • Pearce DW, Reid DM, Pharis RP (1991) Ethylene-mediated regulation of gibberellin content and growth in Helianthus annuus L. Plant Physiol 95:1197–1202

    PubMed  CAS  Google Scholar 

  • Pierik R, Visser EJW, De Kroon H, Voesenek LACJ (2003) Ethylene is required in tobacco to successfully compete with proximate neighbours. Plant Cell Environ 26:1229–1234

    Article  CAS  Google Scholar 

  • Raskin I, Kende H (1984) The role of gibberellin in the growth response of submerged deep water rice. Plant Physiol 76:947–950

    Article  PubMed  CAS  Google Scholar 

  • Reid DM, Sheffer MG, Pierce RC, Bezdicek DF, Linzon SN, Revven T, Spenser MS, Vena F (1985) Ethylene in the environment: scientific criteria for assessing its effects on environmental quality. National Research Council of Canada, Ottawa, publication 22497, p110

  • Rijnders JGHM, Yang YY, Kamiya Y, Takahashi N, Barendse GWM, Blom CWPM, Voesenek LACJ (1997) Ethylene enhances gibberellin levels and petiole sensitivity in flooding-tolerant Rumex palustris but not in flooding-intolerant R. acetosa. Planta 203:20–25

    Article  CAS  Google Scholar 

  • Smith H (2000) Phytochromes and light signal perception by plants-an emerging synthesis. Nature 407:585–591

    Article  PubMed  CAS  Google Scholar 

  • Vandenbussche F, Pierik R, Millenaar FF, Voesenek LA, Van Der Straeten D (2005) Reaching out of the shade. Curr Opin Plant Biol 8:462–468

    Article  PubMed  CAS  Google Scholar 

  • Zobel RW, Robert LW (1978) Effect of low concentration of ethylene on cell division and cell differentiation in lettuce pit explants. Can J Bot 56:987–990

    CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Ms. Bonnie Smith and Mr. Ken Girard for excellent greenhouse assistance. This work was funded by a NSERC (Canada) grant to DMR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid V. Kurepin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurepin, L.V., Walton, L.J. & Reid, D.M. Interaction of red to far red light ratio and ethylene in regulating stem elongation of Helianthus annuus . Plant Growth Regul 51, 53–61 (2007). https://doi.org/10.1007/s10725-006-9147-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-006-9147-x

Keywords

Navigation