Skip to main content
Log in

The involvement of hydrogen peroxide in UV-B-inhibited pollen germination and tube growth of Paeonia suffruticosa and Paulownia tomentosa in vitro

  • Original Paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Previous studies have shown that UV-B could affect pollen germination and tube growth. However, the mechanism of response of pollen to UV-B has not been clear. The purpose of this study was to investigate the role of hydrogen peroxide (H2O2) in the UV-B-induced reduction of in vitro pollen germination and tube growth of Paeonia suffruticosa Andr. and Paulownia tomentosa Steud. Exposure of pollen of the two species to 0.4 and 0.8 W m−2 UV-B radiation for 3 h resulted in not only the reduction of pollen germination and tube growth, but also the H2O2 production in pollen grain and tube. Also, exogenous H2O2 inhibited pollen germination and tube growth of the two species in a dose-dependence manner. Two scavengers of H2O2, ascorbic acid and catalase, largely prevented not only the H2O2 generation, but also the reduction of pollen germination and tube growth induced by UV-B radiation in the two species. These results indicate that H2O2 is involved in the UV-B-inhibited pollen germination and tube growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Able AJ, Sutherland MW, Guest DI (2003) Production of reactive oxygen species during non-specific elicitation, non-host resistance and field resistance expression in cultured tobacco cells. Funct Plant Biol 30:91–99

    Article  CAS  Google Scholar 

  • Allan AC, Fluhr R (1997) Two distinct sources of elicited reactive oxygen species in tobacco epidermal cells. Plant Cell 9:1559–1572

    Article  CAS  Google Scholar 

  • Anderson JG, Toohey DW, Brune WH (1991) Free radicals within the Antarctic vortex: the role of CFCs in Antarctic ozone loss. Science 251:39–46

    Article  CAS  Google Scholar 

  • Angelini R, Federico R (1989) Histochemical evidence of polyamine oxidation and hydrogen peroxide production in the cell wall. J Plant Physiol 135:212–217

    CAS  Google Scholar 

  • Barceló AR, Pomar F, López-Serrano M, Pedreño MA (2003) Peroxidase: a multifunctional enzyme in grapevines. Funct Plant Biol 30:577–591

    Article  Google Scholar 

  • Bednarska E (1989) The effect of exogenous Ca2+ ions on pollen grain germination and pollen tube growth. Sex Plant Reprod 2:53–58

    Article  Google Scholar 

  • Bolwell GP, Bindschedler LV, Blee KA, Butt VS, Davies DR, Gardner SL, Gerrish C, Minibayeva F (2002) The apoplastic oxidative burst in response to biotic stress in plants: a three-component system. J Exp Bot 53:1367–1376

    Article  CAS  Google Scholar 

  • Bradley DJ, Kjellbom P, Lamb CJ (1992) Elicitor- and wound-induced oxidative cross-linking of a proline-rich plant cell wall protein: a novel, rapid defense response. Cell 70:21–30

    Article  CAS  Google Scholar 

  • Burow S, Valet G (1987) Flow-cytometric characterization of stimulation, free radical formation, peroxidase activity and phagocytosis of human granulocytes with 2,7-dichloroflorescein (DCF). Eur J Cell Biol 43:128–133

    CAS  Google Scholar 

  • Caldwell MM (1971) Solar UV-B irradiation and the growth and development of higher plant. In: Giese AC (ed) Photophysiology, vol 6. Academic Press, New York, pp 131–137

    Google Scholar 

  • Caldwell MM, Teramura AH, Tevini M, Bornman JF, Björn L, Kulandaivelu G (1995) Effects of increased solar ultraviolet radiation on terrestrial plants. Ambio 24:166–173

    Google Scholar 

  • Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3:1–30

    Article  CAS  Google Scholar 

  • Cathcart R, Schwiers E, Ames BN (1983) Detection of picomole levels of hydroperoxides using a fluorescent dichlorofluorescein assay. Anal Biochem 134:111–116

    Article  CAS  Google Scholar 

  • Dat J, Vandenbeele S, Vranova E, Van Montagu M, Inzé D, Van Breusegem F (2000) Dual action of the active oxygen species during plant stress response. Cell Mol Life Sci 57:779–795

    Article  CAS  Google Scholar 

  • Demchik SM, Day T (1996) Effects of enhanced UV-B radiation on pollen quantity, quality and seed yield in Brassica rapa (Brassicaceae). Am J Bot 83:573–579

    Article  Google Scholar 

  • Feder WA, Shrier R (1990) Combination of UV-B and ozone reduces pollen growth more than either stress alone. Environ Exp Bot 30:451–454

    Article  CAS  Google Scholar 

  • Feng HY, An LZ, Tan LL, Hou ZD, Wang XL (2000) Effect of enhanced ultraviolet-B radiation on pollen germination and tube growth of 19 taxa in vitro. Environ Exp Bot 43:45–53

    Article  Google Scholar 

  • Flint SD, Caldwell MM (1983) Influence of floral optical properties on the ultraviolet radiation environment of pollen. Am J Bot 70:1416–1419

    Article  Google Scholar 

  • Flint SD, Caldwell MM (1984) Partial inhibition of in vitro pollen germination by simulated solar ultraviolet-B radiation. Ecology 65:792–795

    Article  Google Scholar 

  • Foreman J, Demidchik V, Bothwell JH, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JDG, Davies JM, Dolan L (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442–446

    Article  CAS  Google Scholar 

  • Foyer CH, Lopez-Delgado H, Dat JF, Scott IM (1997) Hydrogen peroxide and glutathione-associated mechanisms of acclamatory stress tolerance and signaling. Physiol Plant 100:241–254

    Article  CAS  Google Scholar 

  • Frisco G, Spetea C, Vass I, Giacometti GM, Barbato R (1994) Degradation of photosystem II reaction center D1-protein induced UVB radiation in isolated thylakoids. Identification and characterization of C- and N-terminal break-down products. Biochim Biophys Acta 1184:78–84

    Google Scholar 

  • Fry SC (1986) Cross-linking of matrix polymers in the growing cells of angiosperms. Annu Rev Plant Physiol 37:165–186

    Article  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1999) Free Radicals in Biology and Medicine, 3rd edn. Oxford University Press, New York

    Google Scholar 

  • He YY, Häder DP (2002) UV-B-induced formation of reactive oxygen species and oxidative damage of the cyanobacterium Anabaena sp.: protective effects of ascorbic acid and N-acetyl-l-cysteine. J Photochem Photobiol B: Biol 66:115–124

    Article  CAS  Google Scholar 

  • He JM, Xu H, She XP, Song XG, Zhao WM (2005) The role and the interrelationship of hydrogen peroxide and nitric oxide in the UV-B-induced stomatal closure in broad bean. Funct Plant Biol 32:237–247

    Article  CAS  Google Scholar 

  • Herth W, Reiss HD, Hartman E (1990) Role of calcium ions in tip growth of pollen tubes and moss protonema cells. In: Heath IB (ed) Tip Growth in Plants and Fungal Cells. Academic Press, San Diego, pp 91–118

    Google Scholar 

  • Hohl M, Greiner H, Schopfer P (1995) The cryptic growth response of maize coleoptile and its relationship to H2O2-dependent cell wall stiffening. Physiol Plant 94:491–498

    Article  CAS  Google Scholar 

  • Holdaway-Clarke TL, Feijò JA, Hackett GR, Kunkel JG, Hepler PK (1997) Pollen tube growth and the intracellular cytosolic calcium gradient oscillate in phase while extracellular calcium influx is delayed. Plant Cell 9:1999–2010

    Article  CAS  Google Scholar 

  • Irihimovitch V, Shapira M (2000) Glutathione redox potential modulated by reactive oxygen species regulates translation of Rubisco large subunit in the chloroplast. J Biol Chem 275:16289–16295

    Article  CAS  Google Scholar 

  • Kohler B, Hills A, Blatt MR (2003) Control of guard cell ion channels by hydrogen peroxide and abscisic acid indicates their action through alternate signaling pathways. Plant Physiol 131:385–388

    Article  CAS  Google Scholar 

  • Landry LG, Chapple CC, Last RL (1995) Arabidopsis mutants lacking phenolic sunscreens exhibit enhanced ultraviolet-B injury and oxidative damage. Plant Physiol 109:1159–1166

    Article  CAS  Google Scholar 

  • Lin CC, Kao CH (2001) Abscisic acid induced changes in cell wall peroxidase activity and hydrogen peroxide level in roots of rice seedlings. Plant Sci 160:323–329

    Article  CAS  Google Scholar 

  • Mackerness SAH, John CF, Jordan B, Thomas B (2001) Early signaling components in ultraviolet-B responses: distinct roles for different reactive oxygen species and nitric oxide. FEBS Lett 489:237–242

    Article  CAS  Google Scholar 

  • Mackerness SAH, Surplus SL, Jordan BR, Thomas B (1998) Effects of supplementary ultraviolet-B radiation on photosynthetic transcripts at different stages of leaf development and light levels in pea (Pisum sativum L.): role of active oxygen species and antioxidant enzymes. Photochem Photobiol 68:88–96

    Article  CAS  Google Scholar 

  • Malhò R, Read ND, Trewavas AJ, Pais MS (1995) Calcium channel activity during pollen tube growth and reorientation. Plant Cell 7:1173–1184

    Article  Google Scholar 

  • Musil CF (1995) Differential effects of elevated ultraviolet-B radiation on the photochemical and reproductive performances of dicotyledonous and monocotyledonous arid-environment ephemerals. Plant, Cell & Environ 18:844–854

    Article  CAS  Google Scholar 

  • Neill SJ, Desikan R, Clarke A, Hurst RD, Hancock JT (2002) Hydrogen peroxide and nitric oxide as signaling molecules in plants. J Exp Bot 53:1237–1247

    Article  CAS  Google Scholar 

  • Obermeyer G, Weisenseel MH (1991) Calcium-channel blocker and calmodulin antagonists affect the gradient of free calcium ions in lily pollen tubes. Eur J Cell Biol 56:319–327

    CAS  Google Scholar 

  • Pei ZM, Murata Y, Benning G, Thomine S, Klusener B, Allen GJ, Grill E, Schroeder JI (2000) Calcium channels activated by hydrogen peroxide mediate abscisic signaling in guard cells. Nature 406:731–734

    Article  CAS  Google Scholar 

  • Pierson ES, Miller DD, Callaham DA, Shipley AM, Rivers BA, Cresti M, Hepler PK (1994) Pollen tube growth is coupled to the extracellular calcium ion flux and the intracellular calcium gradient: effect of BAPTA-type buffers and hypotonic media. Plant Cell 6:1815–1828

    Article  CAS  Google Scholar 

  • Reddy VN, Giblin FJ, Lin LR, Chakrapani B (1998) The effect of aqueous humor ascorbate on ultraviolet-B-induced DNA damage in lens epithelium. Invest Ophthalmol Vis Sci 39:344–350

    CAS  Google Scholar 

  • Reiss HD, Herth W (1985) Nifedipine-sensitive Ca2+-channels are involved in polar growth of lily pollen tubes. J Cell Sci 76:247–254

    CAS  Google Scholar 

  • Robberecht R (1989) Environmental photobiology. In: Smith KC (ed) The Science of Photobiology, 2nd edn. Plenum Press, New York, pp 135–154

    Google Scholar 

  • Rozema J, Boelen P, Blokker P (2005) Depletion of stratospheric ozone over the Antarctic and Arctic: Responses of plants of polar terrestrial ecosystems to enhanced UV-B, an overview. Environ Pollut 137:428–442

    Article  CAS  Google Scholar 

  • SAS (1988) SAS/STAT User’s Guide, Release 6.03 Edition. SAS Institute, Cary, North Carolina

    Google Scholar 

  • Schopfer P (1996) Hydrogen peroxide-mediation cell-wall stiffening in vitro in maize coleoptiles. Planta 199:43–49

    Article  CAS  Google Scholar 

  • Stadler LJ, Uber FM (1942) Genetic effects of ultraviolet radiation in maize. IV. Comparison of monochromatic radiation. Genetics 27:84–118

    Google Scholar 

  • Steer MW, Steer JM (1989) Pollen tube tip growth. New Phytol 111:323–358

    Article  Google Scholar 

  • Surplus SL, Jordan BR, Murphy AM, Carr JP, Thomas B, Mackerness SAH (1998) Ultraviolet-B-induced responses in Arabidopsis thaliana: role of salicylic acid and reactive oxygen species in the regulation of transcripts encoding photosynthetic and acidic pathogenesis-related proteins. Plant, Cell & Environ 21:685–694

    Article  CAS  Google Scholar 

  • Tevini M, Teramura HA (1989) UV-B effects on terrestrial plants. Photochem Photobiol 50:479–487

    CAS  Google Scholar 

  • Torabinejad J, Caldwell MM, Flint SD, Durham S (1998) Susceptibility of pollen to UV-B radiation: an assay of 34 taxa. Am J Bot 85:360–369

    Article  Google Scholar 

  • Van de Staaij JWM, Bolink E, Rozema J, Ernst WHO (1997) The impact of elevated UV-B (280–320 nm) radiation levels on the reproduction biology of a highland and a lowland population of Silene vulgaris. Plant Ecol 128:172–179

    Article  Google Scholar 

  • Yoshioka H, Numata N, Nakajima K, Katou S, Kawakita K, Rowland O, Jones JDG, Doke N (2003) Nicotiana benthamiana gp91phox homologs NbrbohA and NbrbohB participate in H2O2 accumulation and resistance to Phytophthora infestans. Plant Cell 15:706–718

    Article  CAS  Google Scholar 

  • Zhang WH, Rengel Z, Kuo J, Yan G (1999) Aluminium effects on pollen germination and tube growth of Chamelaucium uncinatum. A comparison with other Ca2+ antagonists. Ann Bot 84:559–564

    Article  CAS  Google Scholar 

  • Zhang X, Zhang L, Dong FC, Gao JF, Galbraith DW, Song CP (2001) Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Vicia faba. Plant Physiol 126:1438–1448

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Min He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, JM., Liu, ZH., Xu, H. et al. The involvement of hydrogen peroxide in UV-B-inhibited pollen germination and tube growth of Paeonia suffruticosa and Paulownia tomentosa in vitro. Plant Growth Regul 49, 199–208 (2006). https://doi.org/10.1007/s10725-006-9105-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-006-9105-7

Keywords

Navigation