Carbohydrate Depletion in Roots and Leaves of Salt-Stressed Potted Citrus clementina L.

Abstract

In citrus, damage produced by salinity is mostly due to toxic ion accumulation, since this salt-sensitive crop adjusts osmotically with high efficiency. In spite of this observation, the putative role of sugars as osmolites under salinity remains unknown. In this work, we have studied carbohydrate contents (total hexoses, sucrose and starch) in leaves and roots of citrus grown under increasing salinity. The experimental system was characterized through the analyses of several parameters known to be strongly affected by salinity in citrus, such as chloride accumulation, photosynthetic rate, ethylene production and leaf abscission. Three-year-old plants of the Clementina de Nules cultivar grafted on Carrizo citrange rootstock were watered with three different levels of salinity (NaCl was added to the watering solutions to achieve final concentrations of 30, 60 and 90 mM). Data indicate that salt stress caused an accumulation of chloride ions in a way proportional to the external increase in NaCl. The adverse conditions reduced CO2 assimilation, increased ethylene production and triggered abscission of the injured leaves. Data also show that salinity induced progressive depletions of carbohydrates in leaves and roots of citrus plants. This observation clearly indicates that sugar accumulation is not a main component of the osmotic adjustment machinery in citrus.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    V. Arbona V. Flors P. García-Agustín J. Jacas A. Gómez-Cadenas (2003) ArticleTitleEnzymatic and non-enzymatic antioxidant responses of Carrizo citrangea salt-sensitive citrus rootstock, to different levels of salinity Plant Cell Physiol. 44 388–394 Occurrence Handle10.1093/pcp/pcg059 Occurrence Handle12721379

    Article  PubMed  Google Scholar 

  2. 2.

    M.E. Balibrea J. Dellȁ9Amico M.C. Bolarín F. Pérez-Alfocea (2000) ArticleTitleCarbon partitioning and sucrose metabolism in tomato plants growing under salinity Physiol. Plant. 110 503–511 Occurrence Handle10.1111/j.1399-3054.2000.1100412.x

    Article  Google Scholar 

  3. 3.

    J. Bañuls M.D. Serna M. Legaz E. Primo-Millo (1997) ArticleTitleGrowth and gas exchange parameters of citrus plants stressed with different salts J. Plant Physiol. 150 194–199

    Google Scholar 

  4. 4.

    H.D. Chapman (1968) The mineral nutrition of citrus W. Reuther L.D. Batchelor H.D. Webber (Eds) The Citrus Industry, Vol. II University of California OaklandUSA 127–289

    Google Scholar 

  5. 5.

    J.M. Cheeseman (1988) ArticleTitleMechanisms of salinity tolerance in plants Plant Physiol. 117 547–550

    Google Scholar 

  6. 6.

    L. Ferguson S.R. Grattan (2005) ArticleTitleHow salinity affects citrus: osmotic effects and specific ion toxicities Horttechnology 15 95–99

    Google Scholar 

  7. 7.

    E.E. Goldschmidt K.E. Koch (1996) Citrus E. Zamski A.A. Schaffer (Eds) Plants and Crops Dekker New York, USA 797–823

    Google Scholar 

  8. 8.

    A. Gómez-Cadenas V. Arbona J. Jacas E. Primo-Millo M. Talon (2002) ArticleTitleAbscisic acid reduces leaf abscission and increases salt tolerance in citrus plants J. Plant Growth Regul. 21 234–240 Occurrence Handle10.1007/s00344-002-0013-4

    Article  Google Scholar 

  9. 9.

    A. Gómez-Cadenas F.R. Tadeo M. Talon E. Primo-Millo (1996) ArticleTitleLeaf abscission induced by ethylene in water stressed intact seedlings of Cleopatra mandarin requires previous abscisic acid accumulation in roots Plant Physiol. 112 401–408 Occurrence Handle12226398

    PubMed  Google Scholar 

  10. 10.

    A. Gómez-Cadenas F.R. Tadeo E. Primo-Millo M. Talon (1998) ArticleTitleInvolvement of abscisic acid and ethylene in the response of citrus seedlings to salt shock Physiol. Plant 103 475–484 Occurrence Handle10.1034/j.1399-3054.1998.1030405.x

    Article  Google Scholar 

  11. 11.

    R. Gucci A. Moing E. Gravano J.P. Gaudillere (1998) ArticleTitlePartitioning of photosynthetic carbohydrates in leaves of salt-stressed olive plants Aust. J. Plant Physiol. 25 571–579

    Google Scholar 

  12. 12.

    D.J. Iglesias I. Lliso F.R. Tadeo M. Talon (2002) ArticleTitleRegulation of photosynthesis through source:sink imbalance in citrus is mediated by carbohydrate content in leaves Physiol. Plant. 116 563–572 Occurrence Handle10.1034/j.1399-3054.2002.1160416.x

    Article  Google Scholar 

  13. 13.

    D.J. Iglesias Y. Levy A. Gómez-Cadenas F.R. Tadeo E. Primo-Millo M. Talon (2004) ArticleTitleNitrate improves growth in salt-stressed citrus seedlings through effects on photosynthetic activity and chloride accumulation Tree Physiol. 24 1027–1034 Occurrence Handle15234900

    PubMed  Google Scholar 

  14. 14.

    I. Kerepesi G. Galiba E. Bányai (1998) ArticleTitleOsmotic and salt stresses induced differential alteration in water-soluble carbohydrate content in wheat seedlings J. Agric. Food Chem. 46 5347–5354 Occurrence Handle10.1021/jf980455w

    Article  Google Scholar 

  15. 15.

    J. Lloyd H. Howie (1989a) ArticleTitleResponse of Orchard ȁ8Washington Navelȁ9 OrangeCitrus sinensis (L.) Osbeck to Saline Irrigation water. I Canopy characteristics and seasonal patterns in leaf osmotic potential, carbohydrates and ion concentrations Aust. J. Agric. Res. 40 359–369

    Google Scholar 

  16. 16.

    J. Lloyd H. Howie (1989b) ArticleTitleResponse of Orchard ȁ8Washington Navelȁ9 OrangeCitrus sinensis (L.) Osbeck to Saline Irrigation water. II. Flowering, fruit set and fruit growth Aust. J. Agric. Res. 40 371–380

    Google Scholar 

  17. 17.

    E.V. Maas (1993) ArticleTitleSalinity and citriculture Tree Physiol. 12 195–216 Occurrence Handle14969929

    PubMed  Google Scholar 

  18. 18.

    M.C. Martínez-Ballesta V. Martínez M. Carvajal (2004) ArticleTitleOsmotic adjustmentwater relations and gas exchange in pepper plants grown under NaCl or KCl Environ. Exp. Bot. 52 161–174 Occurrence Handle10.1016/j.envexpbot.2004.01.012

    Article  Google Scholar 

  19. 19.

    J.L. Moya E. Primo-Millo M. Talon (1999) ArticleTitleMorphological factors determining salt tolerance in citrus seedlings: the shoot to root ratio modulates passive root uptake of chloride ions and their accumulation in leaves Plant Cell Environ. 22 1425–1433 Occurrence Handle10.1046/j.1365-3040.1999.00495.x

    Article  Google Scholar 

  20. 20.

    J.L. Moya A. Gómez-Cadenas E. Primo-Millo M. Talón (2003) ArticleTitleChloride absorption in salt-sensitive Carrizo citrange and salt-tolerant Cleopatra mandarin citrus rootstocks is linked to water use J. Exp. Bot. 54 825–833 Occurrence Handle10.1093/jxb/erg064 Occurrence Handle12554725

    Article  PubMed  Google Scholar 

  21. 21.

    R. Munns (1993) ArticleTitlePhysiological processes limiting plant growth in saline soils: some dogmas and hypotheses Plant Cell Environ. 16 15–24

    Google Scholar 

  22. 22.

    R. Munns (2002) ArticleTitleComparative physiology of salt and water stress Plant Cell Environ. 25 239–250 Occurrence Handle10.1046/j.0016-8025.2001.00808.x Occurrence Handle11841667

    Article  PubMed  Google Scholar 

  23. 23.

    G. Rathert (1984) ArticleTitleSucrose and starch content of plant parts as a possible indicator for salt tolerance of crops Aust. J. Plant Physiol. 11 491–495

    Google Scholar 

  24. 24.

    R. Romero-Aranda J.L. Moya F.R. Tadeo F. Legaz E. Primo-Millo M. Talon (1998) ArticleTitlePhysiological and anatomical disturbances induced by chloride salts in sensitive and tolerant citrus: beneficial and detrimental effects of cations Plant Cell Environ. 21 1243–1253 Occurrence Handle10.1046/j.1365-3040.1998.00349.x

    Article  Google Scholar 

  25. 25.

    D. Ruiz V. Martínez A. Cerdá (1997) ArticleTitleCitrus response to salinity: growth and nutrient uptake Tree Physiol. 17 141–150 Occurrence Handle14759868

    PubMed  Google Scholar 

  26. 26.

    R. Storey R.R. Walker (1999) ArticleTitleCitrus and salinity Sci. Hort. 78 39–81 Occurrence Handle10.1016/S0304-4238(98)00190-3

    Article  Google Scholar 

  27. 27.

    N. Sultana T. Ikeda R. Itoh (1999) ArticleTitleEffect of NaCl salinity on photosynthesis and dry matter accumulation in developing rice grains Environ. Exp. Bot. 42 211–220 Occurrence Handle10.1016/S0098-8472(99)00035-0

    Article  Google Scholar 

  28. 28.

    R.R. Walker M. Sedgley M.A. Blesing T.J. Douglas (1984) ArticleTitleAnatomy, ultrastructure and assimilate concentrations of roots of citrus genotypes differing in ability for salt exclusion J. Exp. Bot. 35 1481–1494

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Aurelio Gómez-Cadenas.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Arbona, V., Marco, A., Iglesias, D. et al. Carbohydrate Depletion in Roots and Leaves of Salt-Stressed Potted Citrus clementina L.. Plant Growth Regul 46, 153–160 (2005). https://doi.org/10.1007/s10725-005-7769-z

Download citation

Keywords

  • Ethylene production
  • Hexoses
  • Leaf abscission
  • Photosynthesis rate
  • Salinity
  • Starch
  • Sucrose