Plant Growth Regulation

, Volume 46, Issue 2, pp 153–160 | Cite as

Carbohydrate Depletion in Roots and Leaves of Salt-Stressed Potted Citrus clementina L.

  • Vicent Arbona
  • Aurelio J. Marco
  • Domingo J. Iglesias
  • María F. López-Climent
  • Manuel Talon
  • Aurelio Gómez-CadenasEmail author


In citrus, damage produced by salinity is mostly due to toxic ion accumulation, since this salt-sensitive crop adjusts osmotically with high efficiency. In spite of this observation, the putative role of sugars as osmolites under salinity remains unknown. In this work, we have studied carbohydrate contents (total hexoses, sucrose and starch) in leaves and roots of citrus grown under increasing salinity. The experimental system was characterized through the analyses of several parameters known to be strongly affected by salinity in citrus, such as chloride accumulation, photosynthetic rate, ethylene production and leaf abscission. Three-year-old plants of the Clementina de Nules cultivar grafted on Carrizo citrange rootstock were watered with three different levels of salinity (NaCl was added to the watering solutions to achieve final concentrations of 30, 60 and 90 mM). Data indicate that salt stress caused an accumulation of chloride ions in a way proportional to the external increase in NaCl. The adverse conditions reduced CO2 assimilation, increased ethylene production and triggered abscission of the injured leaves. Data also show that salinity induced progressive depletions of carbohydrates in leaves and roots of citrus plants. This observation clearly indicates that sugar accumulation is not a main component of the osmotic adjustment machinery in citrus.


Ethylene production Hexoses Leaf abscission Photosynthesis rate Salinity Starch Sucrose 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arbona, V., Flors, V., García-Agustín, P., Jacas, J., Gómez-Cadenas, A. 2003Enzymatic and non-enzymatic antioxidant responses of Carrizo citrangea salt-sensitive citrus rootstock, to different levels of salinityPlant Cell Physiol.44388394CrossRefPubMedGoogle Scholar
  2. 2.
    Balibrea, M.E., Dellȁ9Amico, J., Bolarín, M.C., Pérez-Alfocea, F. 2000Carbon partitioning and sucrose metabolism in tomato plants growing under salinityPhysiol. Plant.110503511CrossRefGoogle Scholar
  3. 3.
    Bañuls, J., Serna, M.D., Legaz, M., Primo-Millo, E. 1997Growth and gas exchange parameters of citrus plants stressed with different saltsJ. Plant Physiol.150194199Google Scholar
  4. 4.
    Chapman, H.D. 1968The mineral nutrition of citrusReuther, W.Batchelor, L.D.Webber, H.D. eds. The Citrus Industry, Vol. IIUniversity of CaliforniaOaklandUSA127289Google Scholar
  5. 5.
    Cheeseman, J.M. 1988Mechanisms of salinity tolerance in plantsPlant Physiol.117547550Google Scholar
  6. 6.
    Ferguson, L., Grattan, S.R. 2005How salinity affects citrus: osmotic effects and specific ion toxicitiesHorttechnology159599Google Scholar
  7. 7.
    Goldschmidt, E.E., Koch, K.E. 1996CitrusZamski, E.Schaffer, A.A. eds. Plants and CropsDekkerNew York, USA797823Google Scholar
  8. 8.
    Gómez-Cadenas, A., Arbona, V., Jacas, J., Primo-Millo, E., Talon, M. 2002Abscisic acid reduces leaf abscission and increases salt tolerance in citrus plantsJ. Plant Growth Regul.21234240CrossRefGoogle Scholar
  9. 9.
    Gómez-Cadenas, A., Tadeo, F.R., Talon, M., Primo-Millo, E. 1996Leaf abscission induced by ethylene in water stressed intact seedlings of Cleopatra mandarin requires previous abscisic acid accumulation in rootsPlant Physiol.112401408PubMedGoogle Scholar
  10. 10.
    Gómez-Cadenas, A., Tadeo, F.R., Primo-Millo, E., Talon, M. 1998Involvement of abscisic acid and ethylene in the response of citrus seedlings to salt shockPhysiol. Plant103475484CrossRefGoogle Scholar
  11. 11.
    Gucci, R., Moing, A., Gravano, E., Gaudillere, J.P. 1998Partitioning of photosynthetic carbohydrates in leaves of salt-stressed olive plantsAust. J. Plant Physiol.25571579Google Scholar
  12. 12.
    Iglesias, D.J., Lliso, I., Tadeo, F.R., Talon, M. 2002Regulation of photosynthesis through source:sink imbalance in citrus is mediated by carbohydrate content in leavesPhysiol. Plant.116563572CrossRefGoogle Scholar
  13. 13.
    Iglesias, D.J., Levy, Y., Gómez-Cadenas, A., Tadeo, F.R., Primo-Millo, E., Talon, M. 2004Nitrate improves growth in salt-stressed citrus seedlings through effects on photosynthetic activity and chloride accumulationTree Physiol.2410271034PubMedGoogle Scholar
  14. 14.
    Kerepesi, I., Galiba, G., Bányai, E. 1998Osmotic and salt stresses induced differential alteration in water-soluble carbohydrate content in wheat seedlingsJ. Agric. Food Chem.4653475354CrossRefGoogle Scholar
  15. 15.
    Lloyd, J., Howie, H. 1989aResponse of Orchard ȁ8Washington Navelȁ9 OrangeCitrus sinensis (L.) Osbeck to Saline Irrigation water. I Canopy characteristics and seasonal patterns in leaf osmotic potential, carbohydrates and ion concentrationsAust. J. Agric. Res.40359369Google Scholar
  16. 16.
    Lloyd, J., Howie, H. 1989bResponse of Orchard ȁ8Washington Navelȁ9 OrangeCitrus sinensis (L.) Osbeck to Saline Irrigation water. II. Flowering, fruit set and fruit growthAust. J. Agric. Res.40371380Google Scholar
  17. 17.
    Maas, E.V. 1993Salinity and citricultureTree Physiol.12195216PubMedGoogle Scholar
  18. 18.
    Martínez-Ballesta, M.C., Martínez, V., Carvajal, M. 2004Osmotic adjustmentwater relations and gas exchange in pepper plants grown under NaCl or KClEnviron. Exp. Bot.52161174CrossRefGoogle Scholar
  19. 19.
    Moya, J.L., Primo-Millo, E., Talon, M. 1999Morphological factors determining salt tolerance in citrus seedlings: the shoot to root ratio modulates passive root uptake of chloride ions and their accumulation in leavesPlant Cell Environ.2214251433CrossRefGoogle Scholar
  20. 20.
    Moya, J.L., Gómez-Cadenas, A., Primo-Millo, E., Talón, M. 2003Chloride absorption in salt-sensitive Carrizo citrange and salt-tolerant Cleopatra mandarin citrus rootstocks is linked to water useJ. Exp. Bot.54825833CrossRefPubMedGoogle Scholar
  21. 21.
    Munns, R. 1993Physiological processes limiting plant growth in saline soils: some dogmas and hypothesesPlant Cell Environ.161524Google Scholar
  22. 22.
    Munns, R. 2002Comparative physiology of salt and water stressPlant Cell Environ.25239250CrossRefPubMedGoogle Scholar
  23. 23.
    Rathert, G. 1984Sucrose and starch content of plant parts as a possible indicator for salt tolerance of cropsAust. J. Plant Physiol.11491495Google Scholar
  24. 24.
    Romero-Aranda, R., Moya, J.L., Tadeo, F.R., Legaz, F., Primo-Millo, E., Talon, M. 1998Physiological and anatomical disturbances induced by chloride salts in sensitive and tolerant citrus: beneficial and detrimental effects of cationsPlant Cell Environ.2112431253CrossRefGoogle Scholar
  25. 25.
    Ruiz, D., Martínez, V., Cerdá, A. 1997Citrus response to salinity: growth and nutrient uptakeTree Physiol.17141150PubMedGoogle Scholar
  26. 26.
    Storey, R., Walker, R.R. 1999Citrus and salinitySci. Hort.783981CrossRefGoogle Scholar
  27. 27.
    Sultana, N., Ikeda, T., Itoh, R. 1999Effect of NaCl salinity on photosynthesis and dry matter accumulation in developing rice grainsEnviron. Exp. Bot.42211220CrossRefGoogle Scholar
  28. 28.
    Walker, R.R., Sedgley, M., Blesing, M.A., Douglas, T.J. 1984Anatomy, ultrastructure and assimilate concentrations of roots of citrus genotypes differing in ability for salt exclusionJ. Exp. Bot.3514811494Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Vicent Arbona
    • 1
  • Aurelio J. Marco
    • 1
  • Domingo J. Iglesias
    • 2
  • María F. López-Climent
    • 1
  • Manuel Talon
    • 2
  • Aurelio Gómez-Cadenas
    • 1
    Email author
  1. 1.Departmento de Ciencias ExperimentalesUniversitat Jaume ICampus Riu SecSpain
  2. 2.Departamento de Citricultura y Otros FrutalesInstituto Valenciano de Investigaciones AgrariasMoncadaSpain

Personalised recommendations