Skip to main content
Log in

The Effects of Ascorbate on Root Regeneration in Seedling Cuttings of Tomato

  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The changes in ascorbate (ASC) and dehydroascorbate (DHA) levels and the activities of ascorbate metabolising enzymes were examined during adventitious root formation in cuttings of tomato (Lycopersicon  esculentum Mill. cv. Paw) seedlings. The effects of ASC, DHA and the immediate ascorbate precursor – galactono-γ-lactone (GalL) supplemented to the culture medium on the rooting response, ascorbate content and the activities of the ASC-metabolising enzymes were also investigated. The cuttings treated with abovementioned compounds formed more roots then control plants. However, in contrast to the number of regenerated organs, the elongation of newly formed roots was markedly inhibited. Treatment with auxin (IAA) resulted in a similar phenotype. The inhibitor of auxin polar transport-TIBA (2,3,5-triiodobenzoic acid) effectively blocked rooting. The inhibitory effect of TIBA was reversed by auxin and ASC treatments, while DHA and GalL were ineffective. Both auxin and ASC stimulated cell divisions in an area of pericycle layer of TIBA-treated rooting zones, that enabled cuttings to form roots in the presence of the inhibitor of auxin polar transport. It has been found that the first stages of rooting, preceding the emergence of roots, are accompanied by an increase in endogenous content of ASC with a peak in the 3rd day of rooting. Subsequent stages, when elongation of newly formed roots occurs, are characterised by low level of ASC. The activities of the ascorbate peroxidase (APX), ascorbate oxidase (AOX), ascorbate free radical reductase (AFRR) and dehydroascorbate reductase (DHR) increased in the first 3 days of root formation. The initial period of rooting was also accompanied by the increase of the hydrogen peroxide content and the activities of catalase (CAT) and guaiacol peroxidase (GPX) in the rooting zones. IAA, ASC, DHA as well as Gal stimulated the APX activity, however the rise of the enzyme's activity induced by ASC, DHA and Gal was reversed by TIBA, which was found to inhibit APX. Only exogenous IAA was able to maintain the high level of APX activity in the TIBA-treated cuttings. AOX was strongly affected by ASC and GalL – treatments, its activity increased in the cuttings grown on the media containing ASC in the absence as well as in the presence of TIBA. On the other hand, GalL-dependent stimulation of its activity was suppressed if TIBA was present in a rooting medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AFRR:

ascorbate free radical reductase

AOX:

ascorbate oxidase

APX:

ascorbate peroxidase

ASC:

ascorbic acid

BM:

basal medium

DHA:

dehydroascorbic acid

DHR:

dehydroascorbate reductase

GalL:

l-galactono-γ-lactone

GSH:

glutathione

IAA:

indoletriacetic acid

PM:

proximal meristem

QC:

quiescent center

TIBA:

2,3,5-triiodobenzoic acid

References

  • O. Arrigoni G. Calabrese L. Gara ParticleDe M.B. Bitonti R. Liso (1997) ArticleTitleCorrelation between changes in cell ascorbate and growth of Lupinus albus seedlings J. Plant Physiol. 150 302–308 Occurrence Handle1:CAS:528:DyaK2sXitVenurg%3D

    CAS  Google Scholar 

  • O. Arrigoni M.C. Tullio ParticleDe (2000) ArticleTitleThe role of ascorbic acid in cell metabolism: between gene-directed functions and unpredictable chemical reactions J. Plant Physiol. 157 481–488 Occurrence Handle1:CAS:528:DC%2BD3MXksl2lsA%3D%3D

    CAS  Google Scholar 

  • O. Arrigoni (1994) ArticleTitleAscorbate system in plant development J. Bioenerg. Biomembr. 26 407–419 Occurrence Handle10.1007/BF00762782 Occurrence Handle1:CAS:528:DyaK2cXmsFWitb0%3D Occurrence Handle7844116

    Article  CAS  PubMed  Google Scholar 

  • E. Bernt H.U. Bergmeyer (1974) Inorganic peroxides H.U. Bergmeyer (Eds) Methods of Enzymatic Analysis NumberInSeriesVol. 4. Academic Press New York 2246–2248

    Google Scholar 

  • D. Blakesley G.D. Weston J.F. Hall (1991) ArticleTitleThe role of endogenous auxin in root initiation. Part I: evidence from studies on auxin application, and analysis of endogenous level Plant Growth Regul. 10 341–353 Occurrence Handle1:CAS:528:DyaK38XjsFei

    CAS  Google Scholar 

  • M.M. Bradford (1976) ArticleTitleA rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding Anal. Biochem. 72 248–245 Occurrence Handle10.1016/0003-2697(76)90527-3 Occurrence Handle1:CAS:528:DyaE28XksVehtrY%3D Occurrence Handle942051

    Article  CAS  PubMed  Google Scholar 

  • G.X. Chen K. Asada (1989) ArticleTitleAscorbate peroxidase in tea leaves: occurrence of two izozymes and the differences in their enzymatic and molecular properties Plant Cell Physiol. 30 987–998 Occurrence Handle1:CAS:528:DyaL1MXmt1Oktrk%3D

    CAS  Google Scholar 

  • S.M. Choi S.W. Jeong W.J. Jeong S.Y. Kwong W.S. Chow Y. Park (2002) ArticleTitleChloroplast Cu/Zn-superoxide dismutase is a highly sensitive site in cucumber leaves chilled in the light Planta 216 315–324 Occurrence Handle10.1007/s00425-002-0852-z Occurrence Handle1:CAS:528:DC%2BD3sXktFOhsA%3D%3D Occurrence Handle12447546

    Article  CAS  PubMed  Google Scholar 

  • M.L. Christiansen D.A. Warnick (1983) ArticleTitleCompetence and determination in the process of in vitro shoot organogenesis Dev. Biol. 95 288–293

    Google Scholar 

  • S. Citterio S. Sgorbati S. Scippa E. Sparvoli (1994) ArticleTitleAscorbic acid effect on the onset of cell proliferation in pea root Physiol. Plant. 92 601–607 Occurrence Handle10.1034/j.1399-3054.1994.920409.x Occurrence Handle1:CAS:528:DyaK2MXivVSls7g%3D

    Article  CAS  Google Scholar 

  • R.E. Cleland (2004) Auxin and cell elongation P.J. Davies (Eds) Plant Hormones Biosynthesis, Signal Transduction, Action! Kluwer Academic Publishers Dordrecht, Boston, London 204–220

    Google Scholar 

  • F. Córdoba J.A. Gonzáles-Reyes (1994) ArticleTitleAscorbate and plant cell growth J. Bioenerg. Biomembr. 26 399–405 Occurrence Handle10.1007/BF00762781 Occurrence Handle7844115

    Article  PubMed  Google Scholar 

  • R.C. Cabo ParticleDe J.A. Gonzáles-Reyes F. Córdoba P. Navas (1996) ArticleTitleRooting hastened by ascorbate and ascorbate free radical J. Plant Growth Regul. 15 53–56 Occurrence Handle10.1007/BF00192931

    Article  Google Scholar 

  • De Gara L., de Pinto M.C., Paciolla C., Cappetti V. and Arrigoni O. 1996. Is ascorbate peroxidase only a scavenger of hydrogen peroxide? In: Obinger C., Burner U., Ebermann R., Penel C. and Greppin H. (eds), Plant Peroxidases Biochemistry and Physiology IV. University of Geneva, International Symposium, pp. 157–162.

  • L. Gara ParticleDe C. Paciolla M.C. Tullio ParticleDe M. Motto O. Arrigoni (2000) ArticleTitleAscorbate dependent hydrogen peroxide detoxification and ascorbate regeneration during germination of a highly productive maize hybrid: evidence of an improved detoxification mechanism against reactive oxygen species Physiol. Plant. 109 7–13

    Google Scholar 

  • L. Gara ParticleDe C. Paciolla R. Liso A. Stefani A. Blanco O. Arrigoni (1993) ArticleTitleAscorbate metabolism in mature pollen grains of Dasypyrum villosum (L.) Borb During Imbibition 141 405–409

    Google Scholar 

  • L. Gara ParticleDe F. Tommasi R. Liso O. Arrigoni (1991) ArticleTitleAscorbic acid utilisation by prolyl hydroxylase in vivo Phytochemistry 30 1397–1399

    Google Scholar 

  • M.C. Tullio ParticleDe C. Paciolla F.D. Vecchia N. Rascio S. D’Emerico L. Gara ParticleDe R. Liso O. Arrigoni (1999) ArticleTitleChanges in onion root development induced by the inhibition of peptidyl-prolyl hydroxylase and influence of the ascorbate system on cell division and elongation Planta 209 424–434 Occurrence Handle10550623

    PubMed  Google Scholar 

  • M. Esaka K. Fujisawa M. Goto Y. Kisu (1992) ArticleTitleRegulation of ascorbate oxidase expression by auxine and copper Plant. Physiol. 100 231–237 Occurrence Handle1:CAS:528:DyaK38XmtlShsr0%3D

    CAS  Google Scholar 

  • J. Gadea V. Conejero P. Vera (1999) ArticleTitleDevelopmental regulation of a cytosolic ascorbate peroxidase gene from tomato plants Mol. Gen. Genet. 262 212–219 Occurrence Handle1:CAS:528:DyaK1MXntFCksbo%3D Occurrence Handle10517316

    CAS  PubMed  Google Scholar 

  • Gaspard Th., Penel C. and Greppin H. 1997. Do rooting induction and flowering evocation involve a similar interplay between indoleacetic acid, putrescine and peroxidases? In: Greppin H., Penel C. and Simon P. (eds), Travelling Shot on Plant Development. University of Geneva, pp. 35–50.

  • J.A. Gonzales-Reyes F.J. Alcain J.A. Caler A. Serrano F. Cordoba P. Navas (1994) ArticleTitleRelationship between ascorbate regeneration and the stimulation of root growth in Allium cepa L Plant Sci. 100 23–29

    Google Scholar 

  • A. Hidalgo G. Garcia-Herdugo J.A. Gonzales-Reyes D.J. Morre P. Navas (1991) ArticleTitleAscorbate free radical stimulates root growth by increasing cell elongation Bot. Gaz. 152 282–288 Occurrence Handle10.1086/337891 Occurrence Handle1:CAS:528:DyaK38XitlajsL0%3D

    Article  CAS  Google Scholar 

  • A. Hidalgo J.A. Gonzales-Reyes P. Navas (1989) ArticleTitleAscorbate free radical enhances vacuolization in onion root meristems Plant Cell Environ. 12 455–460 Occurrence Handle1:CAS:528:DyaL1MXlsFSlt7c%3D

    CAS  Google Scholar 

  • N. Horemans C.H. Foyer G. Potters H. Asard (2000) ArticleTitleAscorbate function and associated transport systems in plants Plant Physiol. Biochem. 38 531–540 Occurrence Handle10.1016/S0981-9428(00)00782-8 Occurrence Handle1:CAS:528:DC%2BD3cXms1GjtL8%3D

    Article  CAS  Google Scholar 

  • K. Jiang L.J. Feldman (2003) ArticleTitleRoot meristem establishment and maintenance: the role of auxin J. Plant Growth Regul. 21 432–440 Occurrence Handle10.1007/s00344-002-0037-9

    Article  Google Scholar 

  • K. Jiang Y.L. Meng L.J. Feldman (2003) ArticleTitleQuiescent center formation in maize roots is associated with an auxin-regulated oxidizing environment Development 130 1429–1438 Occurrence Handle1:CAS:528:DC%2BD3sXislOku7w%3D Occurrence Handle12588857

    CAS  PubMed  Google Scholar 

  • A. Jimenez G. Creissen B. Kular J. Firmin S. Robinson M. Verhoeyen P. Mullineaux (2002) ArticleTitleChanges in the oxidative processes and components of the antioxidant system during tomato fruit ripening Planta 214 751–758 Occurrence Handle10.1007/s004250100667 Occurrence Handle1:CAS:528:DC%2BD38Xhs1yqsLo%3D Occurrence Handle11882944

    Article  CAS  PubMed  Google Scholar 

  • N. Kato M. Esaka (1999) ArticleTitleChanges in ascorbate oxidase gene expression and ascorbate levels in cell division and cell elongation in tobacco cells Physiol. Plant. 105 321–329 Occurrence Handle10.1034/j.1399-3054.1999.105218.x Occurrence Handle1:CAS:528:DyaK1MXis1Ggtbs%3D

    Article  CAS  Google Scholar 

  • N.M. Kerk L.J. Feldman (1995) ArticleTitleA biochemical model for the initiation and the maintenance of the quiescent center: implications for organization of root meristems Development 121 2825–2833 Occurrence Handle1:CAS:528:DyaK2MXotF2mtL0%3D

    CAS  Google Scholar 

  • N.M. Kerk K. Jiang L.J. Feldman (2000) ArticleTitleAuxine metabolism in the root apical meristem Plant Physiol. 112 925–932

    Google Scholar 

  • U.K. Laemmli (1970) ArticleTitleCleavage of structural proteins during the assembly of the head of bacteriophage T4 Nature 227 680–685 Occurrence Handle10.1038/227680a0 Occurrence Handle1:CAS:528:DC%2BD3MXlsFags7s%3D Occurrence Handle5432063

    Article  CAS  PubMed  Google Scholar 

  • R. Liso G. Calabrese M.B. Bitonti O. Arrigoni (1984) ArticleTitleRelationship between ascorbic acid and cell division Exp. Cell Res. 150 314–320 Occurrence Handle10.1016/0014-4827(84)90574-3 Occurrence Handle1:CAS:528:DyaL2cXot1yqsQ%3D%3D Occurrence Handle6692854

    Article  CAS  PubMed  Google Scholar 

  • R. Liso A.M. Innocenti M.B. Bitonti O. Arrigoni (1988) ArticleTitleAscorbic acid induced progression of quiescent centre cells from G1 to S phase New Phytol. 110 469–471 Occurrence Handle1:CAS:528:DyaL1MXhslSgt7w%3D

    CAS  Google Scholar 

  • J. Maddison T. Lyons M. Plöchl J. Barnes (2002) ArticleTitleHydroponically cultivated radish fed l-galactono-1,4-lactone exhibit increased tolerance to ozone Planta 214 383–391 Occurrence Handle10.1007/s004250100625 Occurrence Handle1:CAS:528:DC%2BD38XivVGktA%3D%3D Occurrence Handle11855643

    Article  CAS  PubMed  Google Scholar 

  • T.R. Marks Y.Y. Ford R.W.F. Cameron C. Goodwin P.E. Myers H.L. Judd (2002) ArticleTitleA role for polar auxin transport in rhizogenesis Plant Cell Tiss. Org. Cult. 70 189–198 Occurrence Handle10.1023/A:1016352022459 Occurrence Handle1:CAS:528:DC%2BD38XltlemsLg%3D

    Article  CAS  Google Scholar 

  • R. Mittler B.A. Zilinskas (1993) ArticleTitleDetection of ascorbate peroxidase activity in native gels by inhibition of the ascorbate dependent reduction of nitroblue tetrazolium Anal. Biochem. 212 540–546 Occurrence Handle10.1006/abio.1993.1366 Occurrence Handle1:CAS:528:DyaK3sXlslKgsbg%3D Occurrence Handle8214598

    Article  CAS  PubMed  Google Scholar 

  • T. Murashige F. Skoog (1962) ArticleTitleA revised medium for rapid growth and bioassays with tobacco tissue culture Physiol. Plant. 15 437–497

    Google Scholar 

  • P. Navas J.M. Villalba F. Córdoba (1994) ArticleTitleAscorbate function at the plasma membrane Biochem. Biophys. Acta 1197 1–13 Occurrence Handle1:CAS:528:DyaK2cXksFansbY%3D Occurrence Handle8155689

    CAS  PubMed  Google Scholar 

  • G. Noctor C.H. Foyer (1998) ArticleTitleAscorbate and glutathione: keeping active oxygen under control Annu. Rev. Plant Physiol., Plant Mol. Biol. 49 249–279 Occurrence Handle10.1146/annurev.arplant.49.1.249 Occurrence Handle1:CAS:528:DyaK1cXjvVShtrc%3D

    Article  CAS  Google Scholar 

  • K. Oba M. Fukui Y. Imai S. Iriyama K. Nogami (1994) ArticleTitlel-galactono-γ-lactone dehydrogenase: partial characterisation induction of activity and role in the synthesis of ascorbic acid in wounded white potato tuber tissue Plant Cell Physiol. 35 473–478 Occurrence Handle1:CAS:528:DyaK2cXltVCjsb4%3D

    CAS  Google Scholar 

  • M.F. Oberbacher H.M. Vines (1963) ArticleTitleSpectrophotometric assay of ascorbic acid oxidase Nature 197 1203–1204 Occurrence Handle1:CAS:528:DyaF3sXnsVOjsQ%3D%3D Occurrence Handle13939351

    CAS  PubMed  Google Scholar 

  • S.T. Omaye J.D. Turnbull H.E. Sauberlich (1979) ArticleTitleSelected methods for the determination of ascorbic acid in animal cells, tissues and fluids Meth. Enz. 62 3–11 Occurrence Handle1:CAS:528:DyaE1MXltF2ktbo%3D

    CAS  Google Scholar 

  • C. Pignocchi J.M. Flether J.E. Wilkinson J.D. Barnes C.H. Foyer (2003) ArticleTitleThe function of ascorbate oxidase in tobacco Plant Physiol. 132 1631–1641 Occurrence Handle10.1104/pp.103.022798 Occurrence Handle1:CAS:528:DC%2BD3sXlsFGhu7Y%3D Occurrence Handle12857842

    Article  CAS  PubMed  Google Scholar 

  • M.C. Pinto D. Francis L. Gara ParticleDe (1999) ArticleTitleThe redox state of the ascorbate-dehydroascorbate pair as a specific sensor of cell division in tobacco BY-2 cells Protoplasma 209 90–97

    Google Scholar 

  • M.C. Pinto F. Tommasi L. Gara ParticleDe (2000) ArticleTitleEnzymes of the ascorbate biosynthesis and ascorbate-glutathione cycle in cultured cells of tobacco Bright Yellow 2 Plant. Physiol. Biochem. 38 541–550

    Google Scholar 

  • G. Potters N. Horemans R.J. Caubergs H. Asard (2000) ArticleTitleAscorbate and dehydroascorbate influence cell cycle progression in tobacco cell suspension Plant Physiol. 124 17–20 Occurrence Handle10.1104/pp.124.1.17 Occurrence Handle1:CAS:528:DC%2BD3cXmvVGhsbY%3D Occurrence Handle10982417

    Article  CAS  PubMed  Google Scholar 

  • A.G. Prescott P. John (1996) ArticleTitleDioxygenases: molecular structure and role in plant metabolism Annu. Rev. Plant. Physiol., Plant. Mol. Biol. 47 245–271 Occurrence Handle10.1146/annurev.arplant.47.1.245 Occurrence Handle1:CAS:528:DyaK28XjtlWgsbY%3D

    Article  CAS  Google Scholar 

  • X. Qin J.A. Zeevaart (1999) ArticleTitleThe 9-cis-epoxycarotenoid cleavage reaction is the key regulatory step of abscisic acid biosynthesis in water-stressed bean PNAS 96 15354–15361 Occurrence Handle1:CAS:528:DC%2BD3cXhtFehug%3D%3D Occurrence Handle10611388

    CAS  PubMed  Google Scholar 

  • M.L. Racchi F. Bagnoli I. Balla S. Danti (2001) ArticleTitleDifferential activity of catalase and superoxide dismutase in seedlings and in vitro micropropagated oak (Quercus robur L.) Plant Cell Rep. 20 169–174 Occurrence Handle1:CAS:528:DC%2BD3MXhtVGgs7o%3D

    CAS  Google Scholar 

  • M.V. Rao G. Paliyath D.P. Ormrod (1998) ArticleTitleUltraviolet-B- and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana Plant Physiol. 110 125–136

    Google Scholar 

  • R.L. Stahl L.F. Liebes C.M. Farber R. Silber (1983) ArticleTitleA spectrophotometric assay for dehydroascorbate reductase Anal. Biochem. 131 341–344 Occurrence Handle10.1016/0003-2697(83)90180-X Occurrence Handle1:CAS:528:DyaL3sXktlCrtb4%3D Occurrence Handle6614469

    Article  CAS  PubMed  Google Scholar 

  • J. Tyburski A. Tretyn (2004) ArticleTitleThe role of light and polar auxin transport in root regeneration from hypocotyls of tomato seedling cuttings Plant Growth Regul. 42 39–48 Occurrence Handle10.1023/B:GROW.0000014896.18601.38 Occurrence Handle1:CAS:528:DC%2BD2cXpslSrsA%3D%3D

    Article  CAS  Google Scholar 

  • E.J.W. Visser C.J. Heijink K.J.G.M. Hout Particlevan L.A.C.J. Voesenek G.W.M. Barendse C.W.M. Blom (1995) ArticleTitleRegulatory role of auxin in adventitious root formation in two species of Rumexdiffering in their sensitivity to waterlogging Physiol. Plant. 93 116–122 Occurrence Handle10.1034/j.1399-3054.1995.930117.x Occurrence Handle1:CAS:528:DyaK2MXivFOhs7s%3D

    Article  CAS  Google Scholar 

  • W.W. Wells D.P. Xu M.P. Washburn (1995) ArticleTitleGlutathione: dehydroascorbate oxidoreductases Meth. Enz. 144 31–33

    Google Scholar 

  • G.L. Wheeler M.A. Jones N. Smirnoff (1988) ArticleTitleThe biosynthetic pathway of vitamin C in higher plants Nature 393 365–369

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jarosław Tyburski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tyburski, J., Jasionowicz, P. & Tretyn, A. The Effects of Ascorbate on Root Regeneration in Seedling Cuttings of Tomato. Plant Growth Regul 48, 157–173 (2006). https://doi.org/10.1007/s10725-005-5991-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-005-5991-3

Keywords

Navigation