Skip to main content
Log in

Response of barley grains to the interactive e.ect of salinity and salicylic acid

  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Effect of grain soaking presowing in 1 mM salicylic acid (SA) and NaCl (0, 50, 100, 150 and 200 mM) on barley (Hordeum vulgare cv Gerbel) was studied. Increasing of NaCl level reduced the germination percentage, the growth parameters (fresh and dry weight), potassium, calcium, phosphorus and insoluble sugars content in both shoots and roots of 15-day old seedlings. Leaf relative water content (RWC) and the photosynthetic pigments (Chl a, b and carotenoids) contents also decreased with increasing NaCl concentration. On the other hand, Na, soluble sugars, soluble proteins, free amino acids including proline content and lipid peroxidation level and peroxidase activity were increased in the two plant organs with increasing of NaCl level. Electrolyte leakage from plant leaves was found to increase with salinity level. SA-pretreatment increased the RWC, fresh and dry weights, water, photosynthetic pigments, insolube saccharides, phosphorus content and peroxidase activity in the stressed seedlings. On the contrary, Na+, soluble proteins content, lipid peroxidation level, electrolyte leakage were markedly reduced under salt stress with SA than without. Under stress conditions, SA-pretreated plants exhibited less Ca2+ and more accumulation of K+, and soluble sugars in roots at the expense of these contents in the plant shoots. Exogenous application (Grain soaking presowing) of SA appeared to induce preadaptive response to salt stress leading to promoting protective reactions to the photosynthetic pigments and maintain the membranes integrity in barley plants, which reflected in improving the plant growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. B. Aberg (1981) ArticleTitlePlant growth regulators XLI Monosubstituted benzoic acid. Swed. J. Agric. Res. 11 93–105

    Google Scholar 

  2. A.L. Adam C.S. Bestwick B. Barna J.W. Mansfield (1995) ArticleTitleEnzymes regulating the accumulation of active oxygen species during the hypersensitive reaction of bean to Pseudomonas syringae pv. Phaseolicola Planta 197 204–249

    Google Scholar 

  3. R.R. Barkosky F.A. Einhellig (1993) ArticleTitleEffects of salicylic acid on plant water relationship J. Chem. Ecol. 19 237–247 Occurrence Handle10.1007/BF00993692

    Article  Google Scholar 

  4. L.S. Bates R.P. Waldern I.D. Teare (1973) ArticleTitleRapid determination of free proline for water-stress studies. Short communication Plant Soil 39 205–207 Occurrence Handle10.1007/BF00018060

    Article  Google Scholar 

  5. M. Bor F. Özdemir I. Türkan (2003) ArticleTitleThe effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet Beta vulgaris L. and wild beet Beta maritima L Plant Sci. 164 77–84 Occurrence Handle10.1016/S0168-9452(02)00338-2

    Article  Google Scholar 

  6. J.R. Cutt D.F. Klessig (1992) ArticleTitleSalicylic acid in plants: A changing perspective Pharmaceu. Technol. 16 25–34

    Google Scholar 

  7. J.F. Dat C.H. Foyer I.M. Scott (1998) ArticleTitleChanges in salicylic acid and antioxidants during induced thermotolerance in mustard seedlings Plant Physiol. 118 1455–1461 Occurrence Handle10.1104/pp.118.4.1455 Occurrence Handle9847121

    Article  PubMed  Google Scholar 

  8. I.M. Dela-Rosa R.K. Maiti (1995) Biochemical mechanism in glossy sorghum lines for resistance to salinity stress. J. Plant Physiol., 1469 and environmental stress in Phytochemical ecology: allelochemicals C.H. Chou G.R. Walter (Eds) Mycotoxins and Insect Pheromones and Allelomones Academia Sinica Monograph Series 9 Taiwan 101–118

    Google Scholar 

  9. F.W. Fales (1951) ArticleTitleThe assimilation and degradation of carbohydrates of yeast cells J. Biol. Chem. 193 113–118 Occurrence Handle14907695

    PubMed  Google Scholar 

  10. Gomez L., Blanca L. and Antonio C.S. 1993. Evidence of the beneficent acrion of the acetyl salicylic acid on wheat genotypes yield under restricted irrigation. Proc. Scientific meeting on Foresty, Livestock and Agriculture Mexicop. 112

  11. C.F. Ghoulam F. Ahmed F. Khalid (2001) ArticleTitleEffects of salt stress on growthinorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars Environ. Exp. Bot. 47 139–150

    Google Scholar 

  12. H. Greenway R. Munns (1980) ArticleTitleMechanism of salt tolerance in non-halophytes Ann. Rev. Plant Physiol. 31 149–190 Occurrence Handle10.1146/annurev.pp.31.060180.001053

    Article  Google Scholar 

  13. M.A. Gutiérrez-Coronado C. Trejo-Lopez A. Larqué-Saavedra (1998) ArticleTitleEffects of salicylic acid on growth of roots and shoots in soybean Plant Physiol., Biochem. 36 653–665

    Google Scholar 

  14. J.P. Harper N.E. Balke (1981) ArticleTitleCharacterization of the inhibition of K+ absorption in oat roots by salicylic acid Plant Physiol. 68 1349–1353

    Google Scholar 

  15. Hoagland D.R. and Arnon D.I. 1950. The water culture method for growing plants without soil. Calif. Agric. Exp. Sta. Circ. 347: 32.

  16. T. Janda G. Szalai I. Tari E. Páldi (1999) ArticleTitleHydroponic treatment with acid decreases the effects of chilling in maize (Zea mays L.) plants Planta 208 175–180 Occurrence Handle10.1007/s004250050547

    Article  Google Scholar 

  17. H.-M. Kang M.E. Saltveit (2002) ArticleTitleChilling tolerance of maizecucumber and rice seedlings leaves and roots are differentially affected by salicylic acid Physiol. Plant. 115 571–576 Occurrence Handle10.1034/j.1399-3054.2002.1150411.x Occurrence Handle12121463

    Article  PubMed  Google Scholar 

  18. T. Kawano S. Muto (2000) ArticleTitleMechanism of peroxidase actions for salicylic acid-induced generation of active oxygen species and an increase in cytosolic calcium in tobacco cell suspension J. Exp. Bot. 51 685–693 Occurrence Handle10.1093/jexbot/51.345.685 Occurrence Handle10938860

    Article  PubMed  Google Scholar 

  19. W. Khan B. Prithiviraj D. Smith (2003) ArticleTitlePhotosynthetic responses of corn and soybean to foliar application of salicylates J. Plant Physiol. 160 485–492 Occurrence Handle12806776

    PubMed  Google Scholar 

  20. S.E.A. Khodary (2004) ArticleTitleEffect of salicylic acid on the growthphotosynthesis and carbohydrate metabolism in salt-stressed maize plants Int. J. Agri. Biol. 6 5–8

    Google Scholar 

  21. A. Larqué-Saaveda (1979) ArticleTitleStomatal closure in response to salicylic acid treatment Z. Pflanzenphysiol. 93 371–375

    Google Scholar 

  22. O.H. Lowry N.J. Rosenbrugh A.L. Farr R.J. Randall (1951) ArticleTitleProtein measurement with the folin phenol reagent J. Biol. Chem. 193 265–275 Occurrence Handle1:CAS:528:DyaG38XhsVyrsw%3D%3D Occurrence Handle14907713

    CAS  PubMed  Google Scholar 

  23. S. Lutts J.M. Kint J. Bouharmont (1996) ArticleTitleNaCl-induced senescence in leaves of rice (Oriza sativa L.) cultivars differing in salinity resistance Ann. Bot. 78 389–398 Occurrence Handle10.1006/anbo.1996.0134

    Article  Google Scholar 

  24. E.B. Maria D.A José C.B. Maria P.A. Francisco (2000) ArticleTitleCarbon partitioning and sucrose metabolism in tomato plants growing under salinity Physiol. Plant. 110 503–511 Occurrence Handle10.1111/j.1399-3054.2000.1100412.x

    Article  Google Scholar 

  25. A. Metwally I. Finkmemeier M. Georgi K.-J. Dietz (2003) ArticleTitleSalicylic acid alleviates the cadmium toxcity in barley seedlings Plant Physiol. 132 272–281 Occurrence Handle10.1104/pp.102.018457 Occurrence Handle12746532

    Article  PubMed  Google Scholar 

  26. H. Metzner H. Rau H. Senger (1965) ArticleTitleUntersuchungen zur Synchronisierbarkeit einzelner Pigmentmangel mutanten von Chlorella Planta 65 186–194 Occurrence Handle10.1007/BF00384998

    Article  Google Scholar 

  27. S. Moore W. Stein (1948) ArticleTitlePhotometric ninhydrine method for use in the chromatography of amino acids J. Biol. Chem. 17 367–388

    Google Scholar 

  28. J.M. Pardo M.P. Reddy S. Yang A. Maggio G.-H. Huh T. Matsumoto M.A. Coca M. PainoDȁ9Urzo H. Koiwa D-J. Yun A.A. Watad R.A. Bressan P.M. Hasegawa (1998) ArticleTitleStress signaling through Ca2+/calmodulin-dependent protein phosphatase calcineurin mediates salt adaptation in plants Proc. Natl. Acad. Sci. USA 95 9681–9686 Occurrence Handle10.1073/pnas.95.16.9681 Occurrence Handle9689141

    Article  PubMed  Google Scholar 

  29. Popova L., Ananieva E., Hristova V., Christov K., Georgieva K., Alexieva V. and Stoinova Zh. 2003. Salicylic acid-and metyl jasmonate-induced protection on photosynthesis to paraquat oxidative stress. Bulg. J. Plant Physiol. Special Issue 133–152.

  30. L.R. Rajasekaran T.J. Blum (1999) ArticleTitleNew plant growth regulators protect photosynthesis and enhance growth under drought of jack pine seedlings J. Plant Growth Regul. 18 175–181

    Google Scholar 

  31. L.R. Rajasekaran A. Stiles C.D. Caldwell (2002) ArticleTitleStand establishment in processing carrots: Effects of various temperature regimes on germination and the role of salicylates in promoting germination at low temperatures Can. J. Plant Sci. 82 443–450

    Google Scholar 

  32. I. Raskin (1992) ArticleTitleRole of salicylic acid in plants Ann. Rev. Plant Physiol. Plant Mol. Biol. 43 439–463 Occurrence Handle10.1146/annurev.pp.43.060192.002255

    Article  Google Scholar 

  33. T. Senaratna D. Touchell E. Bumm K. Dixon (2000) ArticleTitleAcety salicylic (Aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants Plant Gowth Regul. 30 157–161 Occurrence Handle10.1023/A:1006386800974

    Article  Google Scholar 

  34. M.A. Shaddad A.F. Radi A.M. Abdel-Rahman M.M. Azooz (1990) ArticleTitleResponse of seeds of Lupinus termisVicia faba to the interactive effect of salinity and ascorbic acid or pyridoxine Plant Soil 122 177–183

    Google Scholar 

  35. F.M. Shakirova A.R. Sakhabutdinova M.V. Bezrukova R.A. Fatkhutdinova D.R. Fatkhutdinova (2003) ArticleTitleChanges in the hormonal status of wheat seedlings induced by salicylic acid and salinity Plant Sci. 164 317–322 Occurrence Handle10.1016/S0168-9452(02)00415-6

    Article  Google Scholar 

  36. P.K. Sharma D.O. Hall (1991) ArticleTitleInteraction of salt stress and photoinhibition on photosynthesis in barley and sorghum J. Plant Physiol. 138 614–619

    Google Scholar 

  37. B. Singh K. Usha (2003) ArticleTitleSalicylic acid induced physiological and biochemical changes in wheat seedlings under water stress Plant Growth Regul. 39 137–141 Occurrence Handle10.1023/A:1022556103536

    Article  Google Scholar 

  38. I. Tari J. Csiszár G. Szalai F. Horváth A. Pécsváradi G. Kiss Á. Szepesi M. Szabó L. Erdei (2002) ArticleTitleAcclimation of tomato plants to salinity after a salicylic acid pre-treatment Acta Biologica Szegediensis 46 55–56

    Google Scholar 

  39. E. Taşgín Ö. Atící B. Nalbantoğlu (2003) ArticleTitleEffect of salicylic acid on freezing tolerance in winter wheat leaves Plant Growth Regul. 41 231–236 Occurrence Handle10.1023/B:GROW.0000007504.41476.c2

    Article  Google Scholar 

  40. P.E. Whetherley (1950) ArticleTitleStudies in the water relations of cotton plants. I. The field measurement of water deficit in leaves New Phytol. 49 81–87

    Google Scholar 

  41. V. Williams S. Twine (1960) Flame photometric method for sodiumpotassium and calcium K. Peach M.V. Tracey (Eds) Modern Methods of Plant Analysis Vol V Springer-Verlag Berlin 3–5

    Google Scholar 

  42. J.T. Woods M.G. Mellon (1958) Chlorostannous-reduced molybdophosphoric blue color in sulfuric acid system M.L. Jakson (Eds) In Soil Chemical Analysis Prentice-Hall London 141–144

    Google Scholar 

  43. S.J. Zaho C.C. Xu Q. Zou (1994) ArticleTitleImprovements of the method for measurment of malondialdehyde in plant tissue Plant Physiol. Commun. 30 207–210

    Google Scholar 

  44. S.-G. Zhang J.-Y. Gao J.-Z. Song (1999) ArticleTitleEffects of salicylic acid and aspirin on ATP contents in wheat seedlings under NaCl stress Acta Bot. Sin. 41 675–676

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. El-Tayeb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Tayeb, M. Response of barley grains to the interactive e.ect of salinity and salicylic acid. Plant Growth Regul 45, 215–224 (2005). https://doi.org/10.1007/s10725-005-4928-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-005-4928-1

Keywords

Navigation