Skip to main content

Advertisement

Log in

Cyber Physical System for Distributed Network Using DoS Based Hierarchical Bayesian Network

  • Research
  • Published:
Journal of Grid Computing Aims and scope Submit manuscript

Abstract

The Cyber Physical System (CPS) is a prime target for cyber attacks due to its heterogeneity and connectivity with physical equipment. This paper proposes a model based on a Hierarchical Bayesian Network (HBN) to increase the CPS’s attack detection ability. Denial of Service (DoS) attacks pose a significant threat to production line availability, business services, and human lives. Therefore, this paper focuses on detecting DoS attacks using the Bayesian network model, an efficient algorithm to detect faults in the networking system based on incomplete recognizing information. The standard Bayesian network model is hierarchically enhanced and optimized with a Bacterial Foraging Optimization (BFO) approach to improve the detection process. The developed, optimized model satisfies security, Quality of Service (QoS) requirements, and time consumption by reducing the constraints to obtain system reliability. The efficiency of the proposed model is evaluated using the NSL-KDD dataset and compared with existing approaches in terms of accuracy, precision, recall, F1-score, ROC, and RMSE. Compared to other existing systems, the proposed model achieves an accuracy of 98.4% in detecting DoS attacks with a reduced RMSE of 0.0617.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Adedeji, K.B., Hamam, Y.: Cyber-physical systems for water supply network management: basics, challenges, and roadmap. Sustainability 12, 9555 (2020)

    Article  Google Scholar 

  2. Mo, Y., Kim, T., Brancik, K., Dickinson, D., Lee, H., Perrig, A., Sinopoli, B.: Cyber-physical security of a smart grid infrastructure. Proc. IEEE. 100(1), 195–209 (2012)

  3. Chen, H., Miao, Y., Chen, Y., Fang, L., Zeng, L., …, Shi, J.: Intelligent model-based integrity assessment of nonstationary mechanical system. J. Web Eng. 20(2) (2021)

  4. Cao, B., Fan, S., Zhao, J., Tian, S., Zheng, Z., Yan, Y.,…, Yang, P.: Large-scale many-objective deployment optimization of edge servers. IEEE Trans. Intell Transp. Syst. 22(6), 3841–3849 (2021)

  5. Cao, B., Zhao, J., Lv, Z., Yang, P.: Diversified personalized recommendation optimization based on mobile data. IEEE Trans. Intell. Transp. Syst 22(4), 2133–21392021 (2021)

    Article  Google Scholar 

  6. Ni, Q., Guo, J., Wu, W., Wang, H., Wu, J.: Continuous influence-based community partition for social networks. IEEE Trans. Netw. Sci. Eng. 9(3), 1187–1197 (2022)

  7. Li, Y., Shi, L., Cheng, P., Chen, J., Quevedo, D.E.: Jamming attacks on remote state estimation in cyber-physical systems: A game-theoretic approach. IEEE Trans. Autom. Control 60(10), 2831–2836 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Duan, J., Duan, G., Cheng, S., Cao, S., Wang, G.: Fixed-time time-varying output formation–containment control of heterogeneous general multi-agent systems. ISA Trans. 1–21 (2023). https://doi.org/10.1016/j.isatra.2023.01.008

  9. Xu, X., Lin, Z., Li, X., Shang, C., Shen, Q.: A multi-objective robust optimization model for MDVRPLS in refined oil distribution. Int. J. Prod. Res. 60(22), 6772–6792 (2022)

  10. Ding, K., Li, Y., Quevedo, D.E., Dey, S., Shi, L.: A multi-channel transmission schedule for remote state estimation under DoS attacks. Automatica 78, 194–201 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Liu, Y., Lu, D., Deng, L., Bai, T., Hou, K., Zeng, Y.: Risk assessment for the cascading failure of electric cyber-physical system considering multiple information factors. IET Cyber-Phys. Syst.: Theory Appl. 2(4), 155–160 (2017)

  12. Tian, J., Hou, M., Bian, H., Li, J.: Variable surrogate model-based particle swarm optimization for high-dimensional expensive problems. Complex Intell. Syst. 1–49 (2022). https://doi.org/10.1007/s40747-022-00910-7

  13. Xie, X., Tian, Y., Wei, G.: Deduction of sudden rainstorm scenarios: integrating decision makers’ emotions, dynamic Bayesian network and DS evidence theory. Nat. Hazards 116, 2935–2955 (2023)

  14. Liu, F., Zhang, S., Ma, W., Qu, J.: Research on attack detection of cyber physical systems based on improved support vector machine. Mathematics 10, 2713 (2022). https://doi.org/10.3390/math10152713

    Article  Google Scholar 

  15. Lu, S., Ban, Y., Zhang, X., Yang, B., Liu, S., Yin, L., Zheng, W.: Adaptive control of time delay teleoperation system with uncertain dynamics. Front. Neurorobot. 16, 928863 (2022)

  16. Liu, J., Zhang, W., Ma, T., Tang, Z., Xie, Y., Gui, W., Niyoyita, J.P.: Toward security monitoring of industrial cyber-physical systems via hierarchically distributed intrusion detection. Expert Syst. Appl 158, 113578 (2020). https://doi.org/10.1016/j.eswa.2020.113578

    Article  Google Scholar 

  17. Qin, X., Liu, Z., Liu, Y., Liu, S., Yang, B., Yin, L., Liu, M., Zheng, W.: User OCEAN personality model construction method using a BP neural network. Electronics 11(19), 3022 (2022)

    Article  Google Scholar 

  18. Saghezchi, F.B., Mantas, G., Violas, M.A., de Oliveira Duarte, A.M., Rodriguez, J.: Machine learning for DDoS attack detection in industry 4.0 CPPSs. Electronics 11, 602 (2022). https://doi.org/10.3390/electronics11040602

    Article  Google Scholar 

  19. Dolk, V.S., Tesi, P., De Persis, C., Heemels, W.P.M.H.: Event-triggered control systems under denial-of-service attacks. IEEE Trans. Control Netw. Syst 4, 93–105 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Pasqualetti, F., Dörfler, F., Bullo, F.: Attack detection and identification in cyber-physical systems. IEEE Trans. Autom. Control 58, 2715–2729 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Du, Y., Qin, B., Zhao, C., Zhu, Y., Cao, J.,… Ji, Y.: A novel spatio-temporal synchronization method of roadside asynchronous MMW radar-camera for sensor fusion. IEEE Trans. Intell. Transp. Syst. 1–12 (2021). https://doi.org/10.1109/TITS.2021.3119079

  22. Jonker, M., Sperotto, A., Pras, A.: DDoS Mitigation: A measurement-based approach. In Proceedings of the NOMS 2020–2020 IEEE/IFIP Network Operations and Management Symposium, Budapest, Hungary, 20–24 April ; pp. 1–6. (2020)

  23. Steinberger, J., Sperotto, A., Baier, H., Pras, A.: Distributed DDoS Defense: A collaborative approach at internet scale. In Proceedings of the NOMS 2020–2020 IEEE/IFIP Network Operations and Management Symposium, Budapest, Hungary, 20–24 April ; pp. 1–6 (2020)

  24. Yu, J., Lu, L., Chen, Y., Zhu, Y., Kong, L.: An indirect eavesdropping attack of keystrokes on touch screen through acoustic sensing. IEEE Trans. Mob. Comput. 20(2), 337–351 (2021)

  25. Tuan, T.A., Long, H.V., Son, L.H., Kumar, R., Priyadarshini, I., Son, N.T.K.: Performance evaluation of Botnet DDoS attack detection using machine learning. Evol. Intell 13, 283–294 (2020)

    Article  Google Scholar 

  26. Rahman, M.A., Shakur, M.S., Ahamed, M.S., Hasan, S., Rashid, A.A., Islam, M.A., Haque, M.S.S., Ahmed, A.A.: Cloud-based cyber-physical system with industry 4.0: Remote and digitized additive manufacturing. Automation 3, 400–425 (2022). https://doi.org/10.3390/automation3030021

  27. Muammer, E., Sahin, Lo’ai Tawalbeh, F., Muheidat: The security concerns on cyber-physical systems and potential risks analysis using machine learning. Procedia Comput. Sci. 201, 527–534, ISSN 1877 – 0509 (2022). https://doi.org/10.1016/j.procs.2022.03.068

  28. Kong, H., Lu, L., Yu, J., Chen, Y., Tang, F.: Continuous authentication through finger gesture interaction for smart homes using WiFi. IEEE Trans Mob. Comput. 20(11), 3148–3162 (2021)

  29. Ibrahim Ahmed, A.D., Chelloug, S.A., Al-qaness, M.A.A., Elaziz, M.A.: Feature selection model based on gorilla troops optimizer for intrusion detection systems. Hindawi J. Sensors 2022, Article ID6131463, 12pages (2022). https://doi.org/10.1155/2022/6131463

  30. Rasha Almajed, A.I., Abualkishik, A.Z., Mourad, N., Almansour, F.A.: Using machine learning algorithm for detection of cyber-attacks in cyber physical systems. Period. of Eng. Nat. Sci. 10(3), 261–275 (2022)

  31. Zhao, L., Wang, L.: A new lightweight network based on MobileNetV3. KSII Trans. Internet Inf. Syst. 16(1), 1–15 (2022)

  32. Tomer, V., Sharma, S.: Detecting IoT attacks using an ensemble machine learning model. Future Internet 14, 102 (2022). https://doi.org/10.3390/fi14040102

    Article  Google Scholar 

  33. Meng, X.B., Gao, X.Z., Lu, L., Liu, Y., Zhang, H.A.: New bio-inspired optimisation algorithm: bird swarm algorithm. J. Exp. Theor. Artif. Intell 28, 673–687 (2016)

    Article  Google Scholar 

  34. Zangeneh, V., Shajari, M.: A cost-sensitive move selection strategy for moving target defense. Comput. Secur. 75, 72–91 (2018)

  35. Poolsappasit, N., Dewri, R., Ray, I.: Dynamic security risk management using Bayesian attack graphs. IEEE Trans. Dependable Secur. Comput 9(1), 61–74 (2012)

    Article  Google Scholar 

  36. Rostami, M., Berahmand, K., Nasiri, E., Forouzandeh, S.: Review of swarm intelligence-based feature selection methods. Eng. Appl. Artif. Intell 100, 104210 (2021)

    Article  Google Scholar 

  37. Berahmand, K., Bouyer, A., Vasighi, M.: Community detection in complex networks by detecting and expanding core nodes through extended local similarity of nodes. IEEE Trans. Comput. Social Syst 5(4), 1021–1033 (2018)

    Article  Google Scholar 

  38. Chen, C., Su, M., Lin, C., Lin, C.: A hybrid of bacterial foraging optimization and particle swarm optimization for evolutionary neural fuzzy classifier. Int. J. Fuzzy Syst 16(3), 422–433 (2014)

    Google Scholar 

  39. Gupta, M.K., Sood, P.K., Sharma, V.S.: Machining parameters optimization of titanium alloy using response surface methodology and particle swarm optimization under minimum quantity lubrication environment. Mater. Manuf. Processes 31, 1671–1682 (2016). https://doi.org/10.1080/10426914

    Article  Google Scholar 

  40. Gupta, M.K., Sood, P.K., Sharma, V.S.: Optimization of machining parameters and cutting fluids during nano-fluid based minimum quantity lubrication turning of titanium alloy by using evolutionary techniques. J. Clean. Prod 135, 1276–1288 (2016). https://doi.org/10.1016/j.jclepro.2016.06.184

    Article  Google Scholar 

  41. Johari, N.M., Nohuddin, P.N., Baharin, A.H.A., Yakob, N.A., Ebadi, M.J.: Features requirement elicitation process for designing a chatbot application. IET Netw. (2022). https://doi.org/10.1049/ntw2.12071

  42. She, Q., Hu, R., Xu, J., Liu, M., Xu, K., … Huang, H.: Learning high-DOF reaching-and-grasping via dynamic representation of gripper-object interaction. ACM Trans. Graph. 41(4), 1–14 (2022). https://doi.org/10.1145/3528223.3530091

  43. Zhang, J., Tang, Y., Wang, H., Xu, K.: ASRO-DIO: active subspace random optimization based depth inertial odometry. IEEE Trans. Robot. 1–13 (2022). https://doi.org/10.1109/TRO.2022.3208503

  44. Huang, C., Jiang, F., Huang, Q., Wang, X., Han, Z., … Huang, W.: Dual-graph attention convolution network for 3-D point cloud classification. IEEE Trans. Neural Netw. Learn. Syst. 1–13 (2022). https://doi.org/10.1109/TNNLS.2022.3162301

  45. Shewale, V.R., Patil, H.D.: Performance evaluation of attack detection algorithms using improved hybrid ids with online captured data. Int. J. Comput. Appl 146(8), 35–40 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Xiang Ma: Conceptualization, Methodology, Formal analysis, Supervision, Writing - original draft, Writing - review & editing.

Laila Almutairi: Writing - original draft, Writing - review & editing.

Ahmed M. Alwakeel: Investigation, Data Curation, Validation, Resources, Writing - review & editing.

Mohammed Hameed Alhameed: Project administration, Investigation, Writing - review & editing.

Corresponding author

Correspondence to Xiang Ma.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Almutairi, L., Alwakeel, A.M. et al. Cyber Physical System for Distributed Network Using DoS Based Hierarchical Bayesian Network. J Grid Computing 21, 27 (2023). https://doi.org/10.1007/s10723-023-09662-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10723-023-09662-1

Keywords

Navigation