Skip to main content

What’s Happening Around the World? A Survey and Framework on Event Detection Techniques on Twitter

Abstract

In the last few years, Twitter has become a popular platform for sharing opinions, experiences, news, and views in real-time. Twitter presents an interesting opportunity for detecting events happening around the world. The content (tweets) published on Twitter are short and pose diverse challenges for detecting and interpreting event-related information. This article provides insights into ongoing research and helps in understanding recent research trends and techniques used for event detection using Twitter data. We classify techniques and methodologies according to event types, orientation of content, event detection tasks, their evaluation, and common practices. We highlight the limitations of existing techniques and accordingly propose solutions to address the shortcomings. We propose a framework called EDoT based on the research trends, common practices, and techniques used for detecting events on Twitter. EDoT can serve as a guideline for developing event detection methods, especially for researchers who are new in this area. We also describe and compare data collection techniques, the effectiveness and shortcomings of various Twitter and non-Twitter-based features, and discuss various evaluation measures and benchmarking methodologies. Finally, we discuss the trends, limitations, and future directions for detecting events on Twitter.

This is a preview of subscription content, access via your institution.

References

  1. Abbasi, R.A., Maqbool, O., Mushtaq, M., Aljohani, N.R., Daud, A., Alowibdi, J.S., Shahzad, B.: Saving lives using social media: analysis of the role of Twitter for personal blood donation requests and dissemination. Telematics Inform. 35(4), 892–912 (2018)

    Article  Google Scholar 

  2. Abdelhaq, H., Sengstock, C., Gertz, M.: Eventweet: online localized event detection from Twitter. Proceedings of the VLDB Endowment 6(12), 1326–1329 (2013)

    Article  Google Scholar 

  3. Adedoyin-Olowe, M., Gaber, M.M., Dancausa, C.M., Stahl, F., Gomes, J.B.: A rule dynamics approach to event detection in Twitter with its application to sports and politics. Expert Syst. Appl. 55, 351–360 (2016)

    Article  Google Scholar 

  4. Aiello, L.M., Petkos, G., Martin, C., Corney, D., Papadopoulos, S., Skraba, R., Goker, A., Kompatsiaris, I., Alejandro J.: Sensing trending topics in Twitter. IEEE Trans. Multimedia 15(6), 1268–1282 (2013)

    Article  Google Scholar 

  5. Alhindi, W.A., Talha, M., Sulong, G.B.: The role of modern technology in arab spring. Archives Des Sciences 65(8), 101–112 (2012)

    Google Scholar 

  6. Allan, J.: Introduction to topic detection and tracking. In: Topic detection and tracking, pp. 1–16. Springer (2002)

  7. Allan, J., Carbonell, J.G., Doddington, G., Yamron, J., Yang, Y.: Topic detection and tracking pilot study: final report. In: Proceedings of the DARPA Broadcast News Transcription and Understanding Workshop. USA, Online, pp. 194–218 (1998)

  8. Alqhtani, S.M., Luo, S., Regan, B.: Fusing text and image for event detection in Twitter. CoRR arXiv:1503.03920, pp. 1–9 (2015)

  9. Alsaedi N., Burnap, P., Rana, O.: Identifying disruptive events from social media to enhance situational awareness. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, ASONAM’15, pp. 934–941. ACM, New York (2015)

  10. Alsaedi, N., Burnap, P., Rana, O.F.: A combined classification-clustering framework for identifying disruptive events. In: Proceedings of the 2014 ASE SocialCom Conference. Stanford University, CA, USA, Online, pp. 1–10 (2014)

  11. Alvanaki, F., Sebastian, M., Ramamritham, K., Weikum, G.: Enblogue: emergent topic detection in Web 2.0 streams. In: Proceedings of the 2011 ACM SIGMOD International Conference on Management of Data, SIGMOD’11, pp. 1271–1274. ACM, New York (2011)

  12. Asur, S., Huberman, B.A.: Predicting the future with social media. In: Proceedings of the 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology - vol. 01, WI-IAT’10. Washington, IEEE Computer Society, pp. 492–499 (2010)

  13. Atefeh, F., Khreich, W.: A survey of techniques for event detection in Twitter. Comput. Intell. 31(1), 132–164 (2015)

    MathSciNet  Article  Google Scholar 

  14. Becker, H.: Identification and characterization of events in social media. PhD thesis, Columbia University (2011)

  15. Becker, H., Chen, F., Iter, D., Naaman, M., Gravano, L.: Automatic identification and presentation of Twitter content for planned events. In: International AAAI Conference on Web and Social Media. USA, AAAI, pp. 655–656 (2011)

  16. Becker, H., Iter, D., Naaman, M., Gravano, L.: Identifying content for planned events across social media sites. In: Proceedings of the 5th ACM International Conference on Web Search and Data Mining, WSDM’12, pp. 533–542. ACM, New York (2012)

  17. Becker, H., Naaman, M., Gravano, L.: Learning similarity metrics for event identification in social media. In: Proceedings of the 3rd ACM International Conference on Web Search and Data Mining, WSDM’10, pp. 291–300. ACM, New York (2010)

  18. Becker, H., Naaman, M., Gravano, L.: Beyond trending topics: real-world event identification on Twitter. In: International AAAI Conference on Web and Social Media. USA, AAAI, pp. 438–441 (2011)

  19. Benhardus, J., Kalita, J.: Streaming trend detection in Twitter. Int. J. Web Based Communities 9(1), 122–139 (2013)

    Article  Google Scholar 

  20. Benson, E., Haghighi, A., Barzilay, R.: Event discovery in social media feeds. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies - vol. 1, HLT’11. Stroudsburg, Association for Computational Linguistics, pp. 389–398 (2011)

  21. Boyd, D., Golder, S., Lotan, G.: Tweet, tweet, retweet: conversational aspects of retweeting on Twitter. In: 2010 43rd Hawaii International Conference on System Sciences. USA, IEEE, pp. 1–10 (2010)

  22. Cai, H., Yang, Y., Li, X., Huang, Z.: What are popular exploring Twitter features for event detection, tracking and visualization. In: Proceedings of the 23Rd ACM International Conference on Multimedia, MM’15, pp. 89–98. ACM, New York (2015)

  23. Casati, R., Varzi, A.: Events. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy. Stanford University, USA. winter 2015 (2015)

  24. Castillo, C., Mendoza, M., Poblete, B.: Information credibility on Twitter. In: Proceedings of the 20th International Conference on World Wide Web, WWW ’11, pp. 675–684. ACM, New York (2011)

  25. Chavoshi, N., Hamooni, H., Mueen, A.: On-demand bot detection and archival system. In: Proceedings of the 26th International Conference on World Wide Web Companion. International World Wide Web Conferences Steering Committee, pp. 183–187 (2017)

  26. Chen, C., Wang, Y., Zhang, J., Xiang, Y., Zhou, W., Min, G.: Statistical features-based real-time detection of drifted Twitter spam. IEEE Trans. Inf. Forensics Secur. 12(4), 914–925 (2017)

    Article  Google Scholar 

  27. Chen, Y., Amiri, H., Li, Z., Chua, T.-S.: Emerging Topic Detection for Organizations from Microblogs. In: Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 43–52. ACM, New York (2013)

  28. Chen, Y., Xu, B., Hao, H., Zhou, S., Cao, J.: User-defined Hot Topic Detection in Microblogging. In: Proceedings of the 5th International Conference on Internet Multimedia Computing and Service, pp. 183–186. ACM, New York (2013)

  29. Cheng, T., Wicks, T.: Event detection using Twitter: a spatio-temporal approach. PloS one 9(6), e97807 (2014)

    Article  Google Scholar 

  30. Chierichetti, F., Kleinberg, J., Kumar, R., Mahdian, M., Pandey, S.: Event detection via communication pattern analysis. In: Proceedings of 8th International AAAI Conference on Weblogs and Social Media. USA, Association for the Advancement of Artificial Intelligence, AAAI, pp. 51–60 (2014)

  31. Cordeiro, M.: Twitter event detection: combining wavelet analysis and topic inference summarization. In: Doctoral Symposium on Informatics Engineering, DSIE. Porto, Portugal, University of Porto, vol. 56, pp. 1–16 (2012)

  32. Crane, R., Sornette, D.: Robust dynamic classes revealed by measuring the response function of a social system. Proc. Natl. Acad. Sci. 105(41), 15649–15653 (2008)

    Article  Google Scholar 

  33. Crooks, A., Croitoru, A., Stefanidis, A., Radzikowski, J.: # Earthquake: Twitter as a distributed sensor system. Trans. GIS 17(1), 124–147 (2013)

    Article  Google Scholar 

  34. Cui, A., Zhang, M., Liu, Y., Ma, S., Zhang, K.: Discover breaking events with popular hashtags in Twitter. In: Proceedings of the 21st ACM International Conference on Information and Knowledge Management, pp. 1794–1798. ACM, New York (2012)

  35. de Ridder, D., Tax, D.M.J., Lei, B., Xu, G., Feng, M., Zou, Y., van der Heijden, F: Supervised learning. In: Classification, Parameter Estimation and State Estimation: an Engineering Approach Using MATLAB. 2nd, pp. 207–258 (2017)

  36. Farajidavar, N., Kolozali, S., Barnaghi, P.: A deep multi-view learning framework for city event extraction from Twitter data streams. arXiv:1705.09975 (2017)

  37. Fujisaka, T., Lee, R., Sumiya, K.: Discovery of user behavior patterns from geo-tagged micro-blogs. In: Proceedings of the 4th International Conference on Uniquitous Information Management and Communication, p 36. ACM, New York (2010)

  38. Gao, X., Cao, J., He, Q., Li, J.: A novel method for geographical social event detection in social media. In: Proceedings of the Fifth International Conference on Internet Multimedia Computing and Service, pp. 305–308. ACM, New York (2013)

  39. Giachanou, A., Crestani F.: Like it or not: a survey of Twitter sentiment analysis methods. ACM Comput. Surv. 49(2), 28:1–28:41 (2016)

    Article  Google Scholar 

  40. Gimpel, K., Schneider, N., O’Connor, B., Das, D., Mills, D., Eisenstein, J., Heilman, M., Yogatama, D., Flanigan, J., Smith, N.A.: Part-of-speech tagging for Twitter: annotation, features, and experiments. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies: Short Papers. Stroudsburg, PA, USA .Association for Computational Linguistics, vol. 2, pp. 42–47 (2011)

  41. Gu, H., Xie, X., Lv, Q., Ruan, Y., Shang, L.: Etree: effective and efficient event modeling for real-time online social media networks. In: 2011 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT). IEEE Computer Society, vol. 1, pp. 300–307. IEEE, Washington (2011)

  42. Gupta, A., Lamba, H., Kumaraguru, P.: $1.00 per RT #BostonMarathon #PrayForBoston: analyzing fake content on Twitter. In: 2013 APWG eCrime Researchers Summit. USA, IEEE, pp. 1–12 (2013)

  43. Gupta, P., Jindal, R., Sharma, A.: Community trolling: an active learning approach for topic based community detection in big data. J. Grid Comput. 16(4), 553–567 (2018)

    Article  Google Scholar 

  44. Hong, L., Convertino, G., Chi, E.H.: Language matters in Twitter: a large scale study. In: Proceedings of the Fifth International AAAI Conference on Weblogs and Social Media. USA, Association for the Advancement of Artificial Intelligence, AAAI, pp. 518–521 (2011)

  45. Hua, T., Chen, F., Zhao, L., Lu, C.-T., Ramakrishnan, N.: Sted: semi-supervised targeted-interest event detectionin in Twitter. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1466–1469. ACM, New York (2013)

  46. Huang, J., Peng, M., Wang, H.: Topic detection from large scale of microblog stream with high utility pattern clustering. In: Proceedings of the 8th Workshop on Ph. D. Workshop in Information and Knowledge Management, pp. 3–10. ACM, New York (2015)

  47. Iyengar, A., Finin, T., Joshi, A.: Content-based prediction of temporal boundaries for events in Twitter. In: 2011 IEEE Third International Conference on Privacy, Security, Risk and Trust (PASSAT) and 2011 IEEE Third Inernational Conference on Social Computing (SocialCom). USA, IEEE, pp. 186–191 (2011)

  48. Izquierdo, E.: Social networked media: advances and trends. In: Proceedings of the 2011 ACM Workshop on Social and Behavioural Networked Media Access, pp. 1–2. ACM, New York (2011)

  49. Jarvis, R.A., Patrick, E.A.: Clustering using a similarity measure based on shared near neighbors. IEEE Trans. Comput. 100(11), 1025–1034 (1973)

    Article  Google Scholar 

  50. Jarwar, M.A., Abbasi, R.A., Mushtaq, M., Maqbool, O., Aljohani, N.R., Daud, A., Alowibdi, J.S., Cano, J.R., García, S., Chong, I.: Communiments: a framework for detecting community based sentiments for events. Int. J. Semant. Web Inf. Syst. (IJSWIS) 13(2), 87–108 (2017)

    Article  Google Scholar 

  51. Kaleel, S.B., Abhari, A.: Cluster-discovery of Twitter messages for event detection and trending. J. Comput. Sci. 6, 47–57 (2015)

    Article  Google Scholar 

  52. Kasiviswanathan, S.P., Melville, P., Banerjee, A., Sindhwani, V. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management, pp. 745–754. ACM, New York (2011)

  53. Khan, H.U., Daud, A., Ishfaq, U., Amjad, T., Aljohani, N., Abbasi, R.A., Alowibdi, J.S.: Modelling to identify influential bloggers in the blogosphere a survey. Comput. Hum. Behav. 68, 64–82 (2017)

    Article  Google Scholar 

  54. Khurdiya, A., Dey, L., Mahajan, D., Verma, I.: Extraction and compilation of events and sub-events from Twitter. In: Proceedings of the the 2012 IEEE/WIC/ACM International Joint Conferences on Web Intelligence and Intelligent Agent Technology. Washington, DC, USA, IEEE Computer Society, vol. 01, pp. 504–508 (2012)

  55. Krieger, M., Ahn, D.: Tweetmotif: exploratory search and topic summarization for Twitter. In: Proceedings of AAAI Conference on Weblogs and Social (2010)

  56. Krishnamurthy, B., Gill, P., Arlitt, M.: A few chirps about Twitter. In: Proceedings of the First Workshop on Online Social Networks, pp. 19–24. ACM, New York (2008)

  57. Kulldorff, M.: Satscan user guide for version 9.0 (2011)

  58. Kwak, H., Lee, C., Park, H., Moon, S.: What is Twitter, a social network or a news media?. In: Proceedings of the 19th International Conference on World Wide Web, pp. 591–600. ACM, New York (2010)

  59. Lampos, V., Cristianini, N.: Nowcasting events from the social web with statistical learning. ACM Trans Intell Syst Technol (TIST) 3(4), 72 (2012)

    Google Scholar 

  60. Lanagan, J., Smeaton, A.F.: Using Twitter to detect and tag important events in sports media. In: Proceedings of the 5th International AAAI Conference on Weblogs and Social Media. USA, AAAI, pp. 542–545 (2011)

  61. Lee, R., Sumiya, K.: Measuring geographical regularities of crowd behaviors for Twitter-based geo-social event detection. In: Proceedings of the 2nd ACM SIGSPATIAL International Workshop on Location Based Social Networks, pp. 1–10. ACM, New York (2010)

  62. Li, C., Sun, A., Datta, A.: Twevent: segment-based event detection from tweets. In: Proceedings of the 21St ACM International Conference on Information and Knowledge Management, pp. 155–164. ACM, New York (2012)

  63. Li, C., Weng, J., He, Q., Yao, Y., Datta, A., Sun, A., Lee, B.-S.: Twiner: named entity recognition in targeted Twitter stream. In: Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 721–730. ACM, New York (2012)

  64. Li, H., Wang, Y., Zhang, D., Zhang, M., Chang, E.Y.: Pfp: parallel fp-growth for query recommendation. In: Proceedings of the 2008 ACM Conference on Recommender Systems, pp. 107–114. ACM (2008)

  65. Li, J., Tai, Z., Zhang, R., Yu, W., Liu, L.: Online bursty event detection from microblog. In: Proceedings of the 2014 IEEE/ACM 7th International Conference on Utility and Cloud Computing UCC’14. Washington, DC, USA, IEEE Computer Society, pp. 865–870 (2014)

  66. Li, R., Lei, K.H., Khadiwala, R., Chang, K.C.-C.: Tedas: a Twitter-based event detection and analysis system. In: 2012 IEEE 28th International Conference on Data Engineering (ICDE). USA, IEEE, pp. 1273–1276 (2012)

  67. Liu, C., Xu, R., Gui, L.: Burst events detection on micro-blogging. In: 2013 International Conference on Machine Learning and Cybernetics, vol. 04, pp. 1921–1924. IEEE, Washington (2013)

  68. Liu, X., Nourbakhsh, A., Li, Q., Fang, R., Shah, S.: Real-time rumor debunking on Twitter. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, pp. 1867–1870. ACM, New York (2015)

  69. Liu, X., Wang, M., Huet, B.: Event analysis in social multimedia: a survey. Front. Comp. Sci. 10(3), 433–446 (2016)

    Article  Google Scholar 

  70. Long, R., Wang, H., Chen, Y., Jin, O., Yu, Y.: Towards effective event detection, tracking and summarization on microblog data. In: Wang, H., Li, S., Oyama, S., Hu, X., Qian, T. (eds.) 12th International Conference on Web-Age Information Management, WAIM 2011, Wuhan, China, September 14-16, 2011. Proceedings, pp. 652–663. Springer, Berlin (2011)

  71. Mani, I., Wilson, G.: Robust temporal processing of news. In: Proceedings of the 38th Annual Meeting on Association for Computational Linguistics. Stroudsburg, PA, USA, Association for Computational Linguistics, pp. 69–76 (2000)

  72. Marcus, A., Bernstein, M.S., Badar, O., Karger, D.R., Madden, S., Miller, R.C.: Twitinfo: aggregating and visualizing microblogs for event exploration. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 227–236. ACM (2011)

  73. Massoudi, K., Tsagkias, M., de Rijke, M., Weerkamp, W.: Incorporating query expansion and quality indicators in searching microblog posts. In: Clough, P., Foley, C., Gurrin, C., Jones, G.J.F., Kraaij, W., Lee, H., Mudoch, V. (eds.) 33rd European Conference on IR Research on Advances in Information Retrieval, ECIR 2011, Dublin, Ireland, April 18-21, 2011. Proceedings, pp. 362–367. Springer, Berlin (2011)

  74. Mathioudakis, M., Koudas, N.: Twittermonitor: trend detection over the Twitter stream. In: Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data, pp. 1155–1158. ACM, New York (2010)

  75. McMinn, A.J., Moshfeghi, Y., Jose, J.M.: Building a large-scale corpus for evaluating event detection on Twitter. In: Proceedings of the 22nd ACM International Conference on Information & Knowledge Management, pp. 409–418. ACM (2013)

  76. Metzler, D., Cai, C., Hovy, E.: Structured event retrieval over microblog archives. In: Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, PA, USA, Association for Computational Linguistics, pp. 646–655 (2012)

  77. Minhas, M.F.K., Abbasi, R.A., Aljohani, N.R., Albeshri, A.A., Mushtaq, M.: Intweems: a framework for incremental clustering of tweet streams, pp. 87:1–87:4. ACM, New York (2015)

    Google Scholar 

  78. Mitchell, A., Hitlin, P.: Twitter reaction to events often at odds with overall public opinion (2013)

  79. Morstatter, F., Pfeffer, J., Liu, H., Carley, K.: Is the sample good enough? comparing data from Twitter’s streaming api with Twitter’s firehose. USA, AAAI. In: 7th International AAAI Conference on Weblogs and Social Media, pp. 400–408 (2013)

  80. Nguyen, D.T., Jung, J.E.: Real-time event detection for online behavioral analysis of big social data. Futur. Gener. Comput. Syst. 66, 137–145 (2017)

    Article  Google Scholar 

  81. Panagiotou, N., Katakis, I., Gunopulos, D.: Detecting events in online social networks: definitions, trends and challenges. In: Solving Large Scale Learning Tasks. Challenges and Algorithms, pp. 42–84. Springer (2016)

  82. Petrović, S., Osborne, M., Lavrenko, V.: Streaming first story detection with application to Twitter. In: Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics. Stroudsburg, PA, USA. Association for Computational Linguistics, pp. 181–189 (2010)

  83. Phuvipadawat, S., Murata, T.: Breaking news detection and tracking in Twitter. In: 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT). Washington, DC, USA, IEEE, IEEE Computer Society, vol. 3, pp. 120–123 (2010)

  84. Popescu, A.-M., Pennacchiotti, M.: Detecting Controversial Events from Twitter. In: Proceedings of the 19th ACM International Conference on Information and Knowledge Management, pp. 1873–1876. ACM, New York (2010)

  85. Popescu, A.-M., Pennacchiotti, M., Paranjpe, D.: Extracting events and event descriptions from Twitter. In: Proceedings of the 20th International Conference Companion on World Wide Web, pp. 105–106. ACM, New York (2011)

  86. Raza, A.A., Habib, A., Ashraf, J., Javed, M.: Semantic orientation based decision making framework for big data analysis of sporadic news events. Journal of Grid Computing, pp. 1–17. (2018). https://doi.org/10.1007/s10723-018-9466-y

  87. Ribeiro, S.S. Jr., Davis, C.A. Jr., Oliveira, D.R.R., Meira, W. Jr., Gonçalves, T.S., Pappa, G.L.: Traffic observatory: a system to detect and locate traffic events and conditions using Twitter. In: Proceedings of the 5th ACM SIGSPATIAL International Workshop on Location-Based Social Networks, pp. 5–11. ACM, New York (2012)

  88. Rill, S., Reinel, D., Scheidt, J., Zicari, R.V.: Politwi: early detection of emerging political topics on Twitter and the impact on concept-level sentiment analysis. Knowl.-Based Syst. 69, 24–33 (2014)

    Article  Google Scholar 

  89. Ritter, A., Clark, S., Etzioni, O., et al.: Named entity recognition in Tweets: an experimental study. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA, USA, Association for Computational Linguistics, pp. 1524–1534 (2011)

  90. Ritter, A., Etzioni, O., Clark, S., et al.: Open domain event extraction from Twitter. In: Proceedings of the 18Th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1104–1112. ACM, New York (2012)

  91. Saeed, Z., Abbasi, R.A., Razzak, M.I., Xu, G.: Event detection in Twitter stream using weighted dynamic heartbeat graph approach. IEEE Computational Intelligence Magazine. (2019). In-Press. arXiv:1902.08522

  92. Saeed, Z., Abbasi, R.A., Sadaf, A., Razzak, M.I., Xu, G.: Text stream to temporal network - a dynamic heartbeat graph to detect emerging events on Twitter. In: Proceedings of the 22nd Pacific-Asia Conference Advances in Knowledge Discovery and Data Mining, PAKDD 2018, Melbourne, Australia, June 3-6, 2018 (2018)

  93. Sakaki, T., Okazaki, M., Matsuo, Y.: Earthquake shakes Twitter users: real-time event detection by social sensors. In: Proceedings of the 19th International Conference on World Wide Web, pp. 851–860. ACM, New York (2010)

  94. Sankaranarayanan, J., Samet, H., Teitler, B.E., Lieberman, M.D., Sperling, J.: Twitterstand: news in Tweets. In: Proceedings of the 17th acm Sigspatial International Conference on Advances in Geographic Information Systems, pp. 42–51. ACM, New York (2009)

  95. Sedhai, S., Sun, A.: Semi-supervised spam detection in Twitter stream. IEEE Transactions on Computational Social Systems 5(1), 169–175 (2018)

    Article  Google Scholar 

  96. Sethi, T.S., Kantardzic, M.: On the reliable detection of concept drift from streaming unlabeled data. Expert Syst. Appl. 82, 77–99 (2017)

    Article  Google Scholar 

  97. Shah, A., Halim, Z.: On efficient mining of frequent itemsets from big uncertain databases. Journal of Grid Computing, pp. 1–20. https://doi.org/10.1007/s10723-018-9456-0 (2018)

  98. Da Silva, N.F.F., Coletta, L.F.S., Hruschka, E.R.: A survey and comparative study of tweet sentiment analysis via semi-supervised learning. ACM Comput. Surv. 49(1), 15:1–15:26 (2016)

    Google Scholar 

  99. Somanchi, S., Neill, D.B.: Graph structure learning from unlabeled data for early outbreak detection. IEEE Intell. Syst. 32(2), 80–84 (2017)

    Article  Google Scholar 

  100. Takahashi, T., Abe, S., Igata, N.: Can Twitter be an alternative of real-world sensors? In: Jacko, J.A. (ed.) Human-Computer Interaction. Towards Mobile and Intelligent Interaction Environments: 14th International Conference, HCI International 2011, Orlando, FL, USA, July 9-14, 2011, Proceedings, Part III, pp. 240–249. Springer, Berlin (2011)

  101. Tang, L., Liu, H.: Toward predicting collective behavior via social dimension extraction. IEEE Intell. Syst. 25(4), 19–25 (2010)

    Article  Google Scholar 

  102. Troncy, R., Malocha, B., Fialho, A.T.S.: Linking events with media. In: Proceedings of the 6th International Conference on Semantic Systems, vol. 42. ACM, New York (2010)

  103. Tu, H., Ding, J.: An efficient clustering algorithm for microblogging hot topic detection. In: 2012 International Conference on Computer Science and Service System, pp. 738–741. IEEE, Washington (2012)

  104. Tzelepis, C., Ma, Z., Mezaris, V., Ionescu, B., Kompatsiaris, I., Boato, G., Sebe, N., Yan, S.: Event-based media processing and analysis: a survey of the literature. Image Vis. Comput. 53, 3–19 (2016). Event-based Media Processing and Analysis

    Article  Google Scholar 

  105. Valkanas, G., Gunopulos, D., Boutsis, I., Kalogeraki, V.: An architecture for detecting events in real-time using massive heterogeneous data sources. In: Proceedings of the 2nd International Workshop on Big Data, Streams and Heterogeneous Source Mining: algorithms, Systems, Programming Models and Applications, pp. 103–109. ACM (2013)

  106. Valverde-Albacete, F.J., Peláez-Moreno, C.: 100% Classification accuracy considered harmful: the normalized information transfer factor explains the accuracy paradox. PloS one 9(1), e84217 (2014)

    Article  Google Scholar 

  107. Velampalli, S., Eberle, W.: Novel graph based anomaly detection using background knowledge. In: Proceedings of the Thirtieth International Florida Artificial Intelligence Research Society Conference, pp. 538–543 (2017)

  108. Vieweg, S., Hughes, A.L, Starbird, K., Palen, L.: Microblogging during two natural hazards events: what Twitter may contribute to situational awareness. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1079–1088. ACM, New York (2010)

  109. Vosoughi, S., Roy, D., Aral, S.: The spread of true and false news online. Science 359(6380), 1146–1151 (2018)

    Article  Google Scholar 

  110. Wang, X., McCallum, A.: Topics over time: a non-Markov continuous-time model of topical trends. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 424–433. ACM, New York (2006)

  111. Wang, Y., Kankanhalli, M.S.: Tweeting cameras for event detection. In: Proceedings of the 24th International Conference on World Wide Web, WWW ’15. Republic and Canton of Geneva, Switzerland, International World Wide Web Conferences Steering Committee, pp. 1231–1241 (2015)

  112. Weng, J., Lee, B.-S.: Event detection in Twitter. ICWSM 11, 401–408 (2011)

    Google Scholar 

  113. Williams, S.A., Terras, M.M., Warwick, C.: What do people study when they study Twitter? classifying Twitter related academic papers. J. Doc. 69(3), 384–410 (2013)

    Article  Google Scholar 

  114. Yang, Y., Pierce, T., Carbonell, J.: A study of retrospective and on-line event detection. In: Proceedings of the 21St Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 28–36. ACM, New York (1998)

  115. Zhang, X., Chen, X., Chen, Y., Wang, S., Li, Z., Xia, J.: Event detection and popularity prediction in microblogging. Neurocomputing 149, 1469–1480 (2015)

    Article  Google Scholar 

  116. Zhao, J., Wang, X., Jin, P.: Feature selection for event discovery in social media a comparative study. Comput. Hum. Behav. 51, 903–909 (2015)

    Article  Google Scholar 

  117. Zheng, Y., Li, L., Zheng, F.: Social media support for knowledge management. In: 2010 International Conference on Management and Service Science, pp. 1–4. IEEE, Washington (2010)

  118. Zhou, D., Chen, L., He, Y.: An unsupervised framework of exploring events on Twitter: filtering, extraction and categorization. In: Proceedings of 29th AAAI Conference on Artificial Intelligence. USA, AAAI, pp. 2468–2475 (2015)

  119. Zhou, X., Chen, L.: Event detection over Twitter social media streams. The VLDB Journal—the International Journal on Very Large Data Bases 23(3), 381–400 (2014)

    MathSciNet  Article  Google Scholar 

  120. Zhu, X., Davidson, I.: Knowledge discovery and data mining: challenges and realities. IGI global, Hershey, PA, USA (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rabeeh Ayaz Abbasi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saeed, Z., Abbasi, R.A., Maqbool, O. et al. What’s Happening Around the World? A Survey and Framework on Event Detection Techniques on Twitter. J Grid Computing 17, 279–312 (2019). https://doi.org/10.1007/s10723-019-09482-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10723-019-09482-2

Keywords

  • Events
  • Event detection
  • Twitter
  • Social media
  • Machine learning
  • Survey
  • Taxonomy
  • Framework