Energy-Aware Virtual Machine Consolidation Algorithm Based on Ant Colony System

  • Azra Aryania
  • Hadi S. Aghdasi
  • Leyli Mohammad Khanli
Article
  • 5 Downloads

Abstract

Energy consumption has become a critical issue for data centers due to energy-associated costs and environmental effects. In this paper, we propose a new algorithm based on Ant Colony System to solve Virtual Machine Consolidation problem aims to save the energy consumption of cloud data centers. We consider the energy consumption during VMs migration as one of the primary factors which have not considered in the similar conventional algorithms. It significantly reduces the number of migrations and the active physical machines that result in the reduction of total energy consumption of data centers. The simulation results on the random workload in different scenarios demonstrate that the proposed algorithm outperforms the state-of-the-art VM Consolidation algorithm with regards to the number of migrations, number of sleeping PMs, number of SLA Violations, and energy consumption.

Keywords

Virtual machine consolidation Virtual machine migration Ant colony system Energy consumption Cloud computing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mell, P., Grance, T.: The NIST definition of cloud computing recommendations of the national institute of standards and technology. NIST special publication, p. 7 (2011)Google Scholar
  2. 2.
    Beloglazov, A., Buyya, R., Lee, Y.C., Zomaya, A.: A taxonomy and survey of energy-efficient data centers and cloud computing systems. Adv. Comput. 82, 47–111 (2011)Google Scholar
  3. 3.
    Muirhead, R.: Data centres set to overtake the aviation industry’s carbon footprint. http://www.firestartr.co/journal/2015/7/13/data-centres-set-to-overtake-the-aviation-industrys-carbon-footprint (2015)
  4. 4.
    Vaughan, A.: Data centre emissions rival air travel as digital demand soars. https://www.theguardian.com/environment/2015/sep/25/server-data-centre-emissions-air-travel-web-google-facebook-greenhouse-gas (2015)
  5. 5.
    Borylo, P., Lason, A., Rzasa, J., Szymanski, A., Jajszczyk, A.: Green cloud provisioning throughout cooperation of a WDM wide area network and a hybrid power IT infrastructure: a study on cooperation models. Journal of Grid Computing 14(1), 127–151 (2016)CrossRefGoogle Scholar
  6. 6.
    Hirsch, M., Rodriguez, J.M., Mateos, C., Zunino, A.: A two-phase energy-aware scheduling approach for CPU-intensive jobs in mobile grids. Journal of Grid Computing 15(1), 55–80 (2017)CrossRefGoogle Scholar
  7. 7.
    Tchernykh, A., Lozano, L., Schwiegelshohn, U., Bouvry, P., Pecero, J.E., Nesmachnow, S., Drozdov, A.Y.: Online bi-objective scheduling for iaas clouds ensuring quality of service. Journal of Grid Computing 14(1), 5–22 (2016)CrossRefGoogle Scholar
  8. 8.
    Ferdaus, H., Murshed, M., Calheiros, R.N., Buyya, R.: Virtual machine consolidation in cloud data centers using ACO metaheuristic. In: Euro-Par 2014 Parallel Processing, pp. 306–317 (2014)Google Scholar
  9. 9.
    Li, X., Qian, Z., Lu, S., Wu, J.: Energy efficient virtual machine placement algorithm with balanced and improved resource utilization in a data center. Math. Comput. Model. 58(5-6), 1222–1235 (2013)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Jayasinghe, D., Pu, C., Eilam, T., Steinder, M., Whalley, I., Snible, E.: Improving performance and availability of services hosted on IaaS clouds with structural constraint-aware virtual machine placement. In: Proceedings - 2011 IEEE International Conference on Services Computing, SCC 2011, pp. 72–79 (2011)Google Scholar
  11. 11.
    Levine, J., Ducatelle, F.: Ant colony optimization and local search for bin packing and cutting stock problems. J. Oper. Res. Soc. 55(7), 705–716 (2004)CrossRefMATHGoogle Scholar
  12. 12.
    Feller, E., Rilling, L., Morin, C.: Energy-aware ant colony based workload placement in clouds. In: Proceedings - 2011 12th IEEE/ACM International Conference on Grid Computing, pp. 26–33 (2011)Google Scholar
  13. 13.
    Esnault, A., Feller, E., Morin, C.: Energy-aware distributed ant colony based virtual machine consolidation in iaas clouds bibliographic study. Informatics Mathematics (INRIA), 1–13 (2012)Google Scholar
  14. 14.
    Gao, Y., Guan, H., Qi, Z., Hou, Y., Liu, L.: A multi-objective ant colony system algorithm for virtual machine placement in cloud computing. J. Comput. Syst. Sci. 79(8), 1230–1242 (2013)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Stifler, D.: Johnson: Near-Optimal Bin Packing Algorithms. Thesis (Ph. D.), Massachusetts Institute of Technology, Dept of Mathematics (1973)Google Scholar
  16. 16.
    Farahnakian, F., Ashraf, A., Pahikkala, T., Liljeberg, P., Plosila, J., Porres, I., Tenhunen, H.: Using ant colony system to consolidate VMs for green cloud computing. IEEE Trans. Serv. Comput. 8(2), 187–198 (2015)CrossRefGoogle Scholar
  17. 17.
    Zheng, Q., Li, R., Li, X., Shah, N., Zhang, J., Tian, F., Chao, K.M., Li, J.: Virtual machine consolidated placement based on multi-objective biogeography-based optimization. Futur. Gener. Comput. Syst. 54, 95–122 (2016)CrossRefGoogle Scholar
  18. 18.
    Speitkamp, B., Bichler, M.: A mathematical programming approach for server consolidation problems in virtualized data centers. IEEE Trans. Serv. Comput. 3(4), 266–278 (2010)CrossRefGoogle Scholar
  19. 19.
    Ferreto, T.C., Netto, M.A.S., Calheiros, R.N., De Rose, C.A.F.: Server consolidation with migration control for virtualized data centers. Futur. Gener. Comput. Syst. 27(8), 1027–1034 (2011)CrossRefGoogle Scholar
  20. 20.
    Anand, A., Lakshmi, J., Nandy, S. K.: Virtual machine placement optimization supporting performance SLAs. In: Proceedings of the International Conference on Cloud Computing Technology and Science, Cloudcom, pp. 298–305 (2013)Google Scholar
  21. 21.
    Lin, J.W., Chen, C.H., Lin, C.Y.: Integrating QoS awareness with virtualization in cloud computing systems for delay-sensitive applications. Futur. Gener. Comput. Syst. 37(7), 478–487 (2014)CrossRefGoogle Scholar
  22. 22.
    Hermenier, F., Lorca, X., Menaud, J.-M., Muller, G., Lawall, J.: Entropy: a consolidation manager for clusters. In: Proceedings of the 2009 ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments - VEE ’09, p 41 (2009)Google Scholar
  23. 23.
    Van, H.N.V.H.N., Tran, F.D., Menaud, J.-M.: Performance and power management for cloud infrastructures. In: Proceedings - 2010 IEEE 3rd International Conference on Cloud Computing, CLOUD 2010, pp. 329–336 (2010)Google Scholar
  24. 24.
    Bin, E., Biran, O., Boni, O., Hadad, E., Kolodner, E.K., Moatti, Y., Lorenz, D.H.: Guaranteeing high availability goals for virtual machine placement. In: Proceedings - International Conference on Distributed Computing Systems, pp. 700–709 (2011)Google Scholar
  25. 25.
    Dang, H.T., Hermenier, F.: Higher SLA satisfaction in datacenters with continuous VM placement constraints. In: Proceedings of the 9th Workshop on Hot Topics in Dependable Systems - Hotdep ’13, pp. 1–6 (2013)Google Scholar
  26. 26.
    Wood, T., Shenoy, P., Venkataramani, A., Yousif, M.: Sandpiper: black-box and gray-box resource management for virtual machines. Comput. Netw. 53(17), 2923–2938 (2009)CrossRefMATHGoogle Scholar
  27. 27.
    Mishra, M., Sahoo, A.: On theory of VM placement: anomalies in existing methodologies and their mitigation using a novel vector based approach. In: Proceedings - 2011 IEEE 4th International Conference on Cloud Computing, CLOUD 2011, pp. 275–282 (2011)Google Scholar
  28. 28.
    Beloglazov, A., Buyya, R.: Adaptive threshold-based approach for energy-efficient consolidation of virtual machines in cloud data centers. In: Proceedings of the 8th International Workshop on Middleware for Grids, Clouds and E-Science, pp. 1–6 (2010)Google Scholar
  29. 29.
    Murtazaev, A., Oh, S.: Sercon: server consolidation algorithm using live migration of virtual machines for green computing. IETE Tech. Rev. 28(3), 212–231 (2011)CrossRefGoogle Scholar
  30. 30.
    Tsakalozos, K., Roussopoulos, M., Delis, A.: VM placement in non-homogeneous IaaS-clouds. In: Proceedings of the 9th International Conference on Service-Oriented Computing, ICSOC’11, Paphos, Cyprus, pp. 172–187 (2011)Google Scholar
  31. 31.
    Liao, X., Jin, H., Liu, H.: Towards a green cluster through dynamic remapping of virtual machines. Futur. Gener. Comput. Syst. 28(2), 469–477 (2012)CrossRefGoogle Scholar
  32. 32.
    Wu, Y., Tang, M., Fraser, W.: A simulated annealing algorithm for energy efficient virtual machine placement. In: 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 1245–1250 (2012)Google Scholar
  33. 33.
    Marotta, A., Avallone, S.: A simulated annealing based approach for power efficient virtual machines consolidation. In: Proceedings- 2015 IEEE 8th International Conference on, Cloud Computing, CLOUD 2015, pp. 445–452 (2015)Google Scholar
  34. 34.
    Mi, H., Wang, H., Yin, G., Zhou, Y., Shi, D., Yuan, L.: Online self-reconfiguration with performance guarantee for energy-efficient large-scale cloud computing data centers. In: Proceedings - 2010 IEEE 7th International Conference on Services Computing, SCC 2010, pp. 514–521 (2010)Google Scholar
  35. 35.
    Jeyarani, R., Nagaveni, N., Vasanth Ram, R.: Design and implementation of adaptive power-aware virtual machine provisioner (APA-VMP) using swarm intelligence. Futur. Gener. Comput. Syst. 28(5), 811–821 (2012)CrossRefGoogle Scholar
  36. 36.
    Kansal, N.J., Chana, I.: Energy-aware virtual machine migration for cloud computing - a firefly optimization approach. Journal of Grid Computing 14(2), 327–345 (2016)CrossRefGoogle Scholar
  37. 37.
    López-Pires, F., Barán, B.: Many-Objective Virtual machine placement. Journal of Grid Computing 15(2), 161–176 (2017)CrossRefGoogle Scholar
  38. 38.
    Feller, E., Morin, C., Esnault, A.: A case for fully decentralized dynamic VM consolidation in clouds. In: Cloudcom 2012 - Proceedings: 2012 4th IEEE International Conference on Cloud Computing Technology and Science, pp. 26–33 (2012)Google Scholar
  39. 39.
    Ashraf, A., Porres, I.: Using ant colony system to consolidate multiple web applications in a cloud environment. In: Proceeedings- 2014 22Nd Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), pp. 482–489 (2014)Google Scholar
  40. 40.
    Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans. Evol. Comput. 1(1), 1–26 (1997)CrossRefGoogle Scholar
  41. 41.
    Ajiro, Y., Tanaka, A.: Improving packing algorithms for server consolidation. In: Proceedings of the 33rd International Computer Measurement Group Conference (CMG), pp. 299–406 (2007)Google Scholar
  42. 42.
    Ashraf, A., Porres, I.: Multi-objective dynamic virtual machine consolidation in the cloud using ant colony system. International Journal of Parallel, Emergent and Distributed Systems, Taylor &, Francis, 33(1), 103–120 (2018)Google Scholar
  43. 43.
    Yang, X.S., He, X.: Firefly algorithm: recent advances and applications. International Journal of Swarm Intelligence 1(1), 36–50 (2013)CrossRefGoogle Scholar
  44. 44.
    Wang, Z.C., Wu, X.B.: Hybrid biogeography-based optimization for integer programming. Sci. World J. 2014, 9 (2014)Google Scholar
  45. 45.
    Goudos, S.K.: A novel generalized oppositional biogeography-based optimization algorithm: application to peak to average power ratio reduction in OFDM systems. Open Mathematics 14(1), 705–722 (2016)MathSciNetCrossRefMATHGoogle Scholar
  46. 46.
    Beloglazov, A., Buyya, R.: Optimal online deterministic algorithms and adaptive heuristics for energy and performance efficient dynamic consolidation of virtual machines in Cloud data centers. Concurrency Computation Practice and Experience 24(13), 1397–1420 (2012)CrossRefGoogle Scholar
  47. 47.
    Reed, G.T., Headley, W.R., Mashanovich, G.Z., Gardes, F.Y., Thomson, D.J., Milosevic, M.M.: Chapter 1: silicon photonics—the evolution of integration. In: Fathpour, S., Jalili, B. (eds.) Silicon Photonics for Telecommunications and Biomedicine, p. 25. CRC Press (2012)Google Scholar
  48. 48.

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Computer Engineering Department, Faculty of Electrical and Computer EngineeringUniversity of TabrizTabrizIran

Personalised recommendations